#include using namespace std; using ll = long long; using i64 = long long; #define var auto template using graph = std::vector>; template struct helper { static int to(const Edge &e) { return e.to; } }; template struct helper> { static int to(const std::pair &e) { return e.first; } }; template <> struct helper { static int to(const int &e) { return e; } }; template int to(const Edge &e) { return helper::to(e); } // f(divide, L, R) template void one_third_centroid_decomposition(const graph &g, F f) { const int n = g.size(); assert(n >= 1); std::vector size(n), xy(n), count(n), sort(n); using buf_node = std::pair, graph>; std::vector> buf; const auto get_buf = [&](const int depth) -> buf_node & { while (depth >= buf.size()) buf.push_back(std::make_unique(graph(n), graph(n))); return *buf[depth]; }; const auto dc = [&](const auto &dc, const int n, const int v, const graph &g, const int depth) -> void { if (n <= 2) return; int s = -1; const auto sz = [&](const auto &sz, const int v, const int p) -> void { size[v] = 1; int max = 0; for (const auto &e : g[v]) { if (to(e) != p) { sz(sz, to(e), v); size[v] += size[to(e)]; max = std::max(max, size[to(e)]); } } max = std::max(max, n - size[v]); if (max * 2 <= n) s = v; }; sz(sz, v, -1); int maxsz = 0; for (const auto &e : g[s]) { if (size[to(e)] > size[s]) size[to(e)] = n - size[s]; count[size[to(e)]]++; maxsz = std::max(maxsz, size[to(e)] + 1); } for (int i = 1; i < maxsz; i++) count[i] += count[i - 1]; for (const auto &e : g[s]) sort[--count[size[to(e)]]] = to(e); std::fill(count.begin(), count.begin() + maxsz, 0); int xs = 0, ys = 0; for (int i = g[s].size(); i-- > 0;) { if (xs < ys) xy[sort[i]] = 0, xs += size[sort[i]]; else xy[sort[i]] = 1, ys += size[sort[i]]; } auto &[x, y] = get_buf(depth); x[s].clear(); y[s].clear(); const auto build = [&](const auto &build, const int v, const int p, auto &t) -> void { t[v] = g[v]; for (const auto &e : g[v]) { if (to(e) != p) build(build, to(e), v, t); } }; for (const auto &e : g[s]) { auto &t = xy[to(e)] ? y : x; t[s].push_back(e); build(build, to(e), s, t); } f(s, x, y); dc(dc, xs + 1, s, x, depth + 1); dc(dc, ys + 1, s, y, depth + 1); }; dc(dc, n, 0, g, 0); } int main() { cin.tie(0)->sync_with_stdio(false); int n; cin >> n; vector a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } vector> edges(n); for (int i = 0; i < n - 1; i ++) { int u, v; cin >> u >> v; u--, v--; edges[u].push_back(v); edges[v].push_back(u); } vector ans(n); const auto f = [&](const int s, const auto &x, const auto &y) { vector table; auto dfs1 = [&](auto self, int node, int parent, int depth) -> void { while (table.size() <= depth) table.push_back(0); table[depth] = min(table[depth], -a[node]); for (int child : x[node]) { if (child == parent) continue; self(self, child, node, depth + 1); } }; dfs1(dfs1, s, s, 0); int m = table.size(); for (int i = m - 2; i >= 0; i--) { table[i] = min(table[i], table[i + 1]); } auto dfs2 = [&](auto self, int node, int parent, int depth) -> void { int pos = upper_bound(table.begin(), table.end(), -a[node]) - table.begin(); if (pos >= 1) { ans[node] = max(ans[node], depth + pos - 1); } for (int child : y[node]) { if (child == parent) continue; self(self, child, node, depth + 1); } }; dfs2(dfs2, s, s, 0); }; one_third_centroid_decomposition(edges, [&](int s, const auto &x, const auto &y) { f(s, x, y); f(s, y, x); }); for (int i = 0; i < n; i++) { cout << ans[i] << " \n"[i+1==n]; } }