// #pragma GCC optimize("O3,unroll-loops") #include // #include using namespace std; #if __cplusplus >= 202002L using namespace numbers; #endif template struct graph{ using Weight_t = T; struct Edge_t{ int from, to; T cost; }; int n; vector edge; vector> adj; function ignore; graph(int n = 1): n(n), adj(n){ assert(n >= 1); } graph(const vector> &adj, bool undirected = true): n((int)adj.size()), adj(n){ assert(n >= 1); if(undirected){ for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) if(u < v) link(u, v); } else for(auto u = 0; u < n; ++ u) for(auto v: adj[u]) orient(u, v); } graph(const vector>> &adj, bool undirected = true): n((int)adj.size()), adj(n){ assert(n >= 1); if(undirected){ for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) if(u < v) link(u, v, w); } else for(auto u = 0; u < n; ++ u) for(auto [v, w]: adj[u]) orient(u, v, w); } graph(int n, vector> &edge, bool undirected = true): n(n), adj(n){ assert(n >= 1); for(auto [u, v]: edge) undirected ? link(u, v) : orient(u, v); } graph(int n, vector> &edge, bool undirected = true): n(n), adj(n){ assert(n >= 1); for(auto [u, v, w]: edge) undirected ? link(u, v, w) : orient(u, v, w); } int operator()(int u, int id) const{ #ifdef LOCAL assert(0 <= id && id < (int)edge.size()); assert(edge[id].from == u || edge[id].to == u); #endif return u ^ edge[id].from ^ edge[id].to; } int link(int u, int v, T w = {}){ // insert an undirected edge int id = (int)edge.size(); adj[u].push_back(id), adj[v].push_back(id), edge.push_back({u, v, w}); return id; } int orient(int u, int v, T w = {}){ // insert a directed edge int id = (int)edge.size(); adj[u].push_back(id), edge.push_back({u, v, w}); return id; } void clear(){ for(auto [u, v, w]: edge){ adj[u].clear(); adj[v].clear(); } edge.clear(); ignore = {}; } graph transposed() const{ // the transpose of the directed graph graph res(n); for(auto &e: edge) res.orient(e.to, e.from, e.cost); res.ignore = ignore; return res; } int degree(int u) const{ // the degree (outdegree if directed) of u (without the ignoration rule) return (int)adj[u].size(); } // The adjacency list is sorted for each vertex. vector> get_adjacency_list() const{ vector> res(n); for(auto u = 0; u < n; ++ u) for(auto id: adj[u]){ if(ignore && ignore(id)) continue; res[(*this)(u, id)].push_back(u); } return res; } void set_ignoration_rule(const function &f){ ignore = f; } void reset_ignoration_rule(){ ignore = nullptr; } friend ostream &operator<<(ostream &out, const graph &g){ for(auto id = 0; id < (int)g.edge.size(); ++ id){ if(g.ignore && g.ignore(id)) continue; auto &e = g.edge[id]; out << "{" << e.from << ", " << e.to << ", " << e.cost << "}\n"; } return out; } }; // Requires graph template struct dfs_forest{ int n; T base_dist; vector dist; vector pv; vector pe; vector order; vector pos; vector end; vector size; vector root_of; vector root; vector depth; vector min_depth; vector min_depth_origin; vector min_depth_spanning_edge; // extra_edge[u]: adjacent edges of u which is not part of the spanning forest found during the last dfs-like run. vector> extra_edge; vector was; dfs_forest(T base_dist = 0): base_dist(base_dist){ } void init(int n){ this->n = n; pv.assign(n, -1); pe.assign(n, -1); order.clear(); pos.assign(n, -1); end.assign(n, -1); size.assign(n, 0); root_of.assign(n, -1); root.clear(); depth.assign(n, -1); min_depth.assign(n, -1); min_depth_origin.assign(n, -1); min_depth_spanning_edge.assign(n, -1); dist.assign(n, base_dist); extra_edge.assign(n, {}); was.assign(n, -2); attempt = -1; } int attempt; // O(# of nodes reachable from u) template> void _dfs(const graph &g, int u, F UT = plus<>()){ depth[u] = 0; dist[u] = base_dist; root_of[u] = u; root.push_back(u); pv[u] = pe[u] = -1; auto recurse = [&](auto self, int u)->void{ was[u] = attempt; pos[u] = (int)order.size(); order.push_back(u); size[u] = 1; min_depth[u] = depth[u]; min_depth_origin[u] = u; min_depth_spanning_edge[u] = -1; for(auto id: g.adj[u]){ if(id == pe[u] || g.ignore && g.ignore(id)) continue; int v = g(u, id); if(was[v] == attempt){ if(min_depth[u] > depth[v]){ min_depth[u] = depth[v]; min_depth_spanning_edge[u] = id; } if(pe[u] != id) extra_edge[u].push_back(id); continue; } depth[v] = depth[u] + 1; dist[v] = UT(g.edge[id].cost, dist[u]); pv[v] = u; pe[v] = id; root_of[v] = root_of[u]; self(self, v); size[u] += size[v]; if(min_depth[u] > min_depth[v]){ min_depth[u] = min_depth[v]; min_depth_origin[u] = min_depth_origin[v]; min_depth_spanning_edge[u] = min_depth_spanning_edge[v]; } } end[u] = (int)order.size(); }; recurse(recurse, u); } // O(# of nodes reachable from src) template> void dfs(const graph &g, const vector &src, F UT = plus<>()){ assert(g.n <= n); root.clear(), order.clear(); ++ attempt; for(auto u: src){ assert(0 <= u && u < g.n); if(was[u] != attempt) _dfs(g, u, UT); } } // O(n + m) template> void dfs_all(const graph &g, F UT = plus<>()){ assert(g.n <= n); root.clear(), order.clear(); ++ attempt; for(auto u = 0; u < g.n; ++ u) if(was[u] != attempt) _dfs(g, u, UT); } // Check if u is visited during the last dfs-like call. bool visited(int u) const{ assert(0 <= u && u < n); return was[u] == attempt; } // Check if u is an ancestor of v in some spanning tree. bool ancestor_of(int u, int v) const{ assert(visited(u) && visited(v)); return pos[u] <= pos[v] && end[v] <= end[u]; } // Check if any cycle is found during the last dfs-like call. // If must_contain_root = true, the sought cycle is forced to contain one of the root of the trees. template optional>> find_any_cycle(const graph &g, bool must_contain_root = false) const{ for(auto u: order) for(auto id: extra_edge[u]){ int v = g(u, id); if(!ancestor_of(v, u) || must_contain_root && root_of[v] != v) continue; vector cycle_edge; while(u != v) cycle_edge.push_back(pe[u]), u = pv[u]; reverse(cycle_edge.begin(), cycle_edge.end()); cycle_edge.push_back(id); return pair{v, cycle_edge}; } return {}; } }; template struct binary_lifting{ int n = 0; vector depth; vector> lift; binary_lifting(){ } // pv: parent vertex (-1 if root of an arborescence) binary_lifting(const vector &pv): n((int)pv.size()), depth(n, numeric_limits::max()), lift(n){ for(auto u = 0; u < n; ++ u) lift[u][0] = ~pv[u] ? pv[u] : u; for(auto bit = 1; bit < h; ++ bit) for(auto u = 0; u < n; ++ u) lift[u][bit] = lift[lift[u][bit - 1]][bit - 1]; } // Requires graph template binary_lifting(const Graph &g, const vector &roots){ vector pv(g.n, -1), depth(g.n); auto dfs = [&](auto self, int u, int pe)->void{ for(auto id: g.adj[u]){ if(id == pe || g.ignore && g.ignore(id)) continue; auto &e = g.edge[id]; int v = u ^ e.from ^ e.to; depth[v] = depth[u] + 1; pv[v] = u; self(self, v, id); } }; for(auto u: roots) assert(!depth[u]), pv[u] = u, dfs(dfs, u, -1); *this = binary_lifting(pv, depth); } // pv: parent vertex (-1 if root of an arborescence) binary_lifting(const vector &pv, const vector &depth): n((int)pv.size()), depth(depth){ lift.resize(n); for(auto u = 0; u < n; ++ u) lift[u][0] = ~pv[u] ? pv[u] : u; for(auto d = 1; d < h; ++ d) for(auto u = 0; u < n; ++ u) lift[u][d] = lift[lift[u][d - 1]][d - 1]; } // Index becomes the current number of nodes // O(log n) int add_root(){ int u = n ++; depth.push_back(0); lift.emplace_back(); fill(lift.back().begin(), lift.back().end(), u); return u; } // Index becomes the current number of nodes // O(log n) int add_child(int p){ assert(0 <= p && p < n); int u = n ++; depth.push_back(depth[p] + 1); lift.emplace_back(); lift[u][0] = p; for(auto d = 1; d < h; ++ d) lift[u][d] = lift[lift[u][d - 1]][d - 1]; } // Get the k-th ancestor of u // O(log n) int ancestor(int u, int k) const{ for(auto d = 0; d < h; ++ d) if(k & 1 << d) u = lift[u][d]; return u; } // Assumes u and v lies on the same arboresence // O(log n) int lca(int u, int v) const{ if(depth[u] < depth[v]) swap(u, v); u = ancestor(u, depth[u] - depth[v]); if(u == v) return u; for(auto d = h - 1; d >= 0; -- d) if(lift[u][d] != lift[v][d]) u = lift[u][d], v = lift[v][d]; return lift[u][0]; } // Get # of edges between u and v // Assumes u and v lies on the same arboresence // O(log n) int steps(int u, int v, int w = -1) const{ return depth[u] + depth[v] - 2 * depth[~w ? w : lca(u, v)]; } // For an ancestor p of u, pred(p) is T, ..., T, F, ..., F in decreasing order of depth. Returns the highest p with T // O(log n) int find_highest(int u, auto pred) const{ assert(pred(u)); for(auto d = h - 1; d >= 0; -- d) if(pred(lift[u][d])) u = lift[u][d]; return u; } }; int main(){ cin.tie(0)->sync_with_stdio(0); cin.exceptions(ios::badbit | ios::failbit); int n; cin >> n; map> mp; for(auto u = 0; u < n; ++ u){ int x; cin >> x; mp[x].push_back(u); } graph g(n); for(auto i = 0; i < n - 1; ++ i){ int u, v; cin >> u >> v, -- u, -- v; g.link(u, v, 1); } binary_lifting lift(g, {0}); dfs_forest df; df.init(n); df.dfs(g, {0}); int x = -1, y = -1; vector active(n); auto color_path = [&](int u, int v)->void{ assert(!active[u] && active[v]); while(!active[u] && !df.ancestor_of(u, v)){ active[u] = true; u = df.pv[u]; } if(active[u]){ return; } v = lift.find_highest(v, [&](int v){ return active[v]; }); while(v != u){ v = df.pv[v]; active[v] = true; } }; vector res(n, -1); for(auto [_, a]: mp | ranges::views::reverse){ int i = 0; if(!~x){ x = y = a[i ++]; active[x] = true; } for(; i < (int)a.size(); ++ i){ int u = a[i]; if(active[u]){ continue; } color_path(u, x); if(lift.steps(x, y) < lift.steps(x, u)){ swap(y, u); } if(lift.steps(x, y) < lift.steps(y, u)){ swap(x, u); } } for(auto u: a){ res[u] = max(lift.steps(x, u), lift.steps(y, u)); } } ranges::copy(res, ostream_iterator(cout, " ")); cout << "\n"; return 0; } /* */