#include <bits/stdc++.h> using namespace std; /** * @brief Scanner(高速入力) */ struct Scanner { public: explicit Scanner(FILE *fp) : fp(fp) {} template <typename T, typename... E> void read(T &t, E &...e) { read_single(t); read(e...); } private: static constexpr size_t line_size = 1 << 16; static constexpr size_t int_digits = 20; char line[line_size + 1] = {}; FILE *fp = nullptr; char *st = line; char *ed = line; void read() {} static inline bool is_space(char c) { return c <= ' '; } void reread() { ptrdiff_t len = ed - st; memmove(line, st, len); char *tmp = line + len; ed = tmp + fread(tmp, 1, line_size - len, fp); *ed = 0; st = line; } void skip_space() { while (true) { if (st == ed) reread(); while (*st && is_space(*st)) ++st; if (st != ed) return; } } template <typename T, enable_if_t<is_integral<T>::value, int> = 0> void read_single(T &s) { skip_space(); if (st + int_digits >= ed) reread(); bool neg = false; if (is_signed<T>::value && *st == '-') { neg = true; ++st; } typename make_unsigned<T>::type y = *st++ - '0'; while (*st >= '0') { y = 10 * y + *st++ - '0'; } s = (neg ? -y : y); } template <typename T, enable_if_t<is_same<T, string>::value, int> = 0> void read_single(T &s) { s = ""; skip_space(); while (true) { char *base = st; while (*st && !is_space(*st)) ++st; s += string(base, st); if (st != ed) return; reread(); } } template <typename T> void read_single(vector<T> &s) { for (auto &d : s) read(d); } }; /** * @brief Printer(高速出力) */ struct Printer { public: explicit Printer(FILE *fp) : fp(fp) {} ~Printer() { flush(); } template <bool f = false, typename T, typename... E> void write(const T &t, const E &...e) { if (f) write_single(' '); write_single(t); write<true>(e...); } template <typename... T> void writeln(const T &...t) { write(t...); write_single('\n'); } void flush() { fwrite(line, 1, st - line, fp); st = line; } private: FILE *fp = nullptr; static constexpr size_t line_size = 1 << 16; static constexpr size_t int_digits = 20; char line[line_size + 1] = {}; char *st = line; template <bool f = false> void write() {} void write_single(const char &t) { if (st + 1 >= line + line_size) flush(); *st++ = t; } template <typename T, enable_if_t<is_integral<T>::value, int> = 0> void write_single(T s) { if (st + int_digits >= line + line_size) flush(); st += to_chars(st, st + int_digits, s).ptr - st; } void write_single(const string &s) { for (auto &c : s) write_single(c); } void write_single(const char *s) { while (*s != 0) write_single(*s++); } template <typename T> void write_single(const vector<T> &s) { for (size_t i = 0; i < s.size(); i++) { if (i) write_single(' '); write_single(s[i]); } } }; Scanner scanner = Scanner(stdin); Printer printer = Printer(stdout); void flush() { printer.flush(); } void print() { printer.write('\n'); } template <class Head, class... Tail> void print(Head &&head, Tail &&...tail) { printer.write(head); if (sizeof...(Tail)) printer.write(' '); print(forward<Tail>(tail)...); } void read() {} template <class Head, class... Tail> void read(Head &head, Tail &...tail) { scanner.read(head); read(tail...); } #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ long long __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector<type> name(size); \ read(name) #define VV(type, name, h, w) \ vector<vector<type>> name(h, vector<type>(w)); \ read(name) #ifdef LOCAL #include <debug.h> #else #define debug(...) 42 #endif // LOCAL struct ChronoTimer { std::chrono::high_resolution_clock::time_point st; ChronoTimer() { reset(); } void reset() { st = std::chrono::high_resolution_clock::now(); } std::chrono::milliseconds::rep elapsed() { auto ed = std::chrono::high_resolution_clock::now(); return std::chrono::duration_cast<std::chrono::milliseconds>(ed - st) .count(); } }; namespace Geometry { typedef long long db; const db EPS = 0; // 判断数符号,负数返回-1,0返回0,正数返回1 inline int sign(db a) { return a < -EPS ? -1 : a > EPS; } // 比较两数大小 inline int cmp(db a, db b) { return sign(a - b); } // 点类,向量类 struct P { // 点表示坐标,向量表示向量 db x, y; P() {} // 构造函数 P(db _x, db _y) : x(_x), y(_y) {} // 向量加减乘除 P operator+(P p) { return {x + p.x, y + p.y}; } P operator-(P p) { return {x - p.x, y - p.y}; } P operator*(db d) { return {x * d, y * d}; } P operator/(db d) { return {x / d, y / d}; } // 比较字典序 bool operator<(P p) const { int c = cmp(x, p.x); if (c) { return c == -1; } return cmp(y, p.y) == -1; } bool operator==(P o) const { return cmp(x, o.x) == 0 && cmp(y, o.y) == 0; } // 点积 db dot(P p) { return x * p.x + y * p.y; } // 叉积 db det(P p) { return x * p.y - y * p.x; } // 点距离 db distTo(P p) { return (*this - p).abs(); } db alpha() { return atan2(y, x); } void read() { cin >> x >> y; } void write() { cout << "(" << x << "," << y << ")" << endl; } db abs() { return sqrt(abs2()); } db abs2() { return x * x + y * y; } P rot90() { return P(-y, x); } P unit() { return *this / abs(); } // 判断点在极角坐标系上半边还是下半边,极点和极轴也算上半边 int quad() const { return sign(y) == 1 || (sign(y) == 0 && sign(x) >= 0); } // 向量旋转 P rot(db an) { return {db(x * cos(an) - y * sin(an)), db(x * sin(an) + y * cos(an))}; } }; // 线类,半平面类 struct L { // ps[0] -> ps[1] P ps[2]; P &operator[](int i) { return ps[i]; } P dir() { return ps[1] - ps[0]; } L(P a, P b) { ps[0] = a; ps[1] = b; } bool include(P p) { return sign((ps[1] - ps[0]).det(p - ps[0])) > 0; } L push() { // push eps outward const double eps = 1e-8; P delta = (ps[1] - ps[0]).rot90().unit() * eps; return {ps[0] + delta, ps[1] + delta}; } }; // 叉积 #define cross(p1, p2, p3) \ ((p2.x - p1.x) * (p3.y - p1.y) - (p3.x - p1.x) * (p2.y - p1.y)) #define crossOp(p1, p2, p3) sign(cross(p1, p2, p3)) // 判断向量平行 bool chkLL(P p1, P p2, P q1, P q2) { db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2); return sign(a1 + a2) != 0; } // 求直线交点 P isLL(P p1, P p2, P q1, P q2) { db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2); return (p1 * a2 + p2 * a1) / (a1 + a2); } P isLL(L l1, L l2) { return isLL(l1[0], l1[1], l2[0], l2[1]); } bool intersect(db l1, db r1, db l2, db r2) { if (l1 > r1) { swap(l1, r1); } if (l2 > r2) { swap(l2, r2); } return !(cmp(r1, l2) == -1 || cmp(r2, l1) == -1); } // 判断线段相交,交在端点算不算分为严格不严格 bool isSS(P p1, P p2, P q1, P q2) { return intersect(p1.x, p2.x, q1.x, q2.x) && intersect(p1.y, p2.y, q1.y, q2.y) && crossOp(p1, p2, q1) * crossOp(p1, p2, q2) <= 0 && crossOp(q1, q2, p1) * crossOp(q1, q2, p2) <= 0; } bool isSS_strict(P p1, P p2, P q1, P q2) { return crossOp(p1, p2, q1) * crossOp(p1, p2, q2) < 0 && crossOp(q1, q2, p1) * crossOp(q1, q2, p2) < 0; } // 点在线段上判定 bool isMiddle(db a, db m, db b) { return sign(a - m) == 0 || sign(b - m) == 0 || ((a < m) != (b < m)); } bool isMiddle(P a, P m, P b) { return isMiddle(a.x, m.x, b.x) && isMiddle(a.y, m.y, b.y); } bool onSeg(P p1, P p2, P q) { return crossOp(p1, p2, q) == 0 && isMiddle(p1, q, p2); } bool onSeg_strict(P p1, P p2, P q) { return crossOp(p1, p2, q) == 0 && sign((q - p1).dot(p1 - p2)) * sign((q - p2).dot(p1 - p2)) < 0; } // 投影,反射,最近点 // 最近点是线段外一点到线段上的点的最短距离 P proj(P p1, P p2, P q) { P dir = p2 - p1; return p1 + dir * (dir.dot(q - p1) / dir.abs2()); } P reflect(P p1, P p2, P q) { return proj(p1, p2, q) * 2 - q; } db nearest(P p1, P p2, P q) { if (p1 == p2) { return p1.distTo(q); } P h = proj(p1, p2, q); if (isMiddle(p1, h, p2)) { return q.distTo(h); } return min(p1.distTo(q), p2.distTo(q)); } // 线段距离 db disSS(P p1, P p2, P q1, P q2) { if (isSS(p1, p2, q1, q2)) return 0; return min(min(nearest(p1, p2, q1), nearest(p1, p2, q2)), min(nearest(q1, q2, p1), nearest(q1, q2, p2))); } db rad(P p1, P p2) { return atan2l(p1.det(p2), p1.dot(p2)); } db incircle(P p1, P p2, P p3) { db A = p1.distTo(p2); db B = p2.distTo(p3); db C = p3.distTo(p1); return sqrtl(A * B * C / (A + B + C)); } // polygon // 简单多边形的问题只有判断点在多边形内,和多边形面积简单,其他只做凸多边形 // 多边形面积 db area(vector<P> ps) { db ret = 0; int N = ps.size(); for (int i = 0; i < N; ++i) { ret += ps[i].det(ps[(i + 1) % N]); } return ret / 2; } // 2:inside,1:on_seg,0:outside // 判断点在多边形内 int contain(vector<P> ps, P p) { int n = ps.size(), ret = 0; for (int i = 0; i < n; i++) { P u = ps[i], v = ps[(i + 1) % n]; if (onSeg(u, v, p)) { return 1; } if (cmp(u.y, v.y) <= 0) { swap(u, v); } if (cmp(p.y, u.y) > 0 || cmp(p.y, v.y) <= 0) { continue; } ret ^= crossOp(p, u, v) > 0; } return ret * 2; } // 凸包 vector<P> convexHull(vector<P> ps) { int n = ps.size(); if (n <= 1) { return ps; } sort(ps.begin(), ps.end()); vector<P> qs(n * 2); int k = 0; for (int i = 0; i < n; qs[k++] = ps[i++]) { while (k > 1 && crossOp(qs[k - 2], qs[k - 1], ps[i]) <= 0) { --k; } } for (int i = n - 2, t = k; i >= 0; qs[k++] = ps[i--]) { while (k > t && crossOp(qs[k - 2], qs[k - 1], ps[i]) <= 0) { --k; } } qs.resize(k - 1); return qs; } vector<P> convexHullNonStrict(vector<P> ps) { // caution: need to unique the Ps first int n = ps.size(); if (n <= 1) { return ps; } sort(ps.begin(), ps.end()); vector<P> qs(n * 2); int k = 0; for (int i = 0; i < n; qs[k++] = ps[i++]) { while (k > 1 && crossOp(qs[k - 2], qs[k - 1], ps[i]) < 0) { --k; } } for (int i = n - 2, t = k; i >= 0; qs[k++] = ps[i--]) { while (k > t && crossOp(qs[k - 2], qs[k - 1], ps[i]) < 0) { --k; } } qs.resize(k - 1); return qs; } // 凸包直径 db convexDiameter(vector<P> ps) { int n = ps.size(); if (n <= 1) { return 0; } int is = 0, js = 0; for (int k = 1; k < n; k++) { is = ps[k] < ps[is] ? k : is, js = ps[js] < ps[k] ? k : js; } int i = is, j = js; db ret = ps[i].distTo(ps[j]); do { if ((ps[(i + 1) % n] - ps[i]).det(ps[(j + 1) % n] - ps[j]) >= 0) { (++j) %= n; } else { (++i) %= n; } ret = max(ret, ps[i].distTo(ps[j])); } while (i != is || j != js); return ret; } // 直线切割凸包,返回直线左边凸包的点 vector<P> convexCut(const vector<P> &ps, P q1, P q2) { vector<P> qs; int n = ps.size(); for (int i = 0; i < n; i++) { P p1 = ps[i], p2 = ps[(i + 1) % n]; int d1 = crossOp(q1, q2, p1), d2 = crossOp(q1, q2, p2); if (d1 >= 0) { qs.push_back(p1); } if (d1 * d2 < 0) { qs.push_back(isLL(p1, p2, q1, q2)); } } return qs; } // 平面最近点对,[l,r),要求ps按x升序 db min_dist(vector<P> &ps, int l, int r) { if (r - l <= 5) { db ret = 1e18; for (int i = l; i < r; ++i) { for (int j = l; j < i; ++j) { ret = min(ret, ps[i].distTo(ps[j])); } } return ret; } int m = (l + r) >> 1; db ret = min(min_dist(ps, l, m), min_dist(ps, m, r)); vector<P> qs; for (int i = l; i < r; ++i) { if (abs(ps[i].x - ps[m].x) <= ret) { qs.push_back(ps[i]); } } sort(qs.begin(), qs.end(), [](P a, P b) -> bool { return a.y < b.y; }); int N = qs.size(); for (int i = 1; i < N; ++i) { for (int j = i - 1; j >= 0 && qs[j].y >= qs[i].y - ret; --j) { ret = min(ret, qs[i].distTo(qs[j])); } } return ret; } int type(P o1, db r1, P o2, db r2) { db d = o1.distTo(o2); if (cmp(d, r1 + r2) == 1) { return 4; } if (cmp(d, r1 + r2) == 0) { return 3; } if (cmp(d, abs(r1 - r2)) == 1) { return 2; } if (cmp(d, abs(r1 - r2)) == 0) { return 1; } return 0; } vector<P> isCL(P o, db r, P p1, P p2) { if (cmp(abs((o - p1).det(p2 - p1) / p1.distTo(p2)), r) > 0) { return {}; } db x = (p1 - o).dot(p2 - p1); db y = (p2 - p1).abs2(); db d = x * x - y * ((p1 - o).abs2() - r * r); d = max(d, (db)0.0); P m = p1 - (p2 - p1) * (x / y), dr = (p2 - p1) * (sqrt(d) / y); return {m - dr, m + dr}; // along dir: p1->p2 } // need to check whether two circles are the same vector<P> isCC(P o1, db r1, P o2, db r2) { db d = o1.distTo(o2); if (cmp(d, r1 + r2) == 1) { return {}; } if (cmp(d, abs(r1 - r2)) == -1) { return {}; } d = min(d, r1 + r2); db y = (r1 * r1 + d * d - r2 * r2) / (2 * d), x = sqrt(r1 * r1 - y * y); P dr = (o2 - o1).unit(); P q1 = o1 + dr * y, q2 = dr.rot90() * x; return {q1 - q2, q1 + q2}; // along circle 1 } vector<P> tanCP(P o, db r, P p) { db x = (p - o).abs2(), d = x - r * r; if (sign(d) <= 0) { return {}; // on circle => no tangent } P q1 = o + (p - o) * (r * r / x); P q2 = (p - o).rot90() * (r * sqrt(d) / x); return {q1 - q2, q1 + q2}; // counter clock-wise } vector<L> extanCC(P o1, db r1, P o2, db r2) { vector<L> ret; if (cmp(r1, r2) == 0) { P dr = (o2 - o1).unit().rot90() * r1; ret.push_back(L(o1 + dr, o2 + dr)); ret.push_back(L(o1 - dr, o2 - dr)); } else { P p = (o2 * r1 - o1 * r2) / (r1 - r2); vector<P> ps = tanCP(o1, r1, p), qs = tanCP(o2, r2, p); int N = std::min(ps.size(), qs.size()); for (int i = 0; i < N; i++) { ret.push_back(L(ps[i], qs[i])); // c1 counter-clock wise } } return ret; } vector<L> intanCC(P o1, db r1, P o2, db r2) { vector<L> ret; P p = (o1 * r2 + o2 * r1) / (r1 + r2); vector<P> ps = tanCP(o1, r1, p), qs = tanCP(o2, r2, p); int N = std::min(ps.size(), qs.size()); for (int i = 0; i < N; i++) { ret.push_back(L(ps[i], qs[i])); // c1 counter-clock wise } return ret; } db areaCT(db r, P p1, P p2) { vector<P> is = isCL(P(0, 0), r, p1, p2); if (is.empty()) { return r * r * rad(p1, p2) / 2; } bool b1 = cmp(p1.abs2(), r * r) == 1, b2 = cmp(p2.abs2(), r * r) == 1; if (b1 && b2) { if (sign((p1 - is[0]).dot(p2 - is[0])) <= 0 && sign((p1 - is[0]).dot(p2 - is[0])) <= 0) { return r * r * (rad(p1, is[0]) + rad(is[1], p2)) / 2 + is[0].det(is[1]) / 2; } else { return r * r * rad(p1, p2) / 2; } } if (b1) { return (r * r * rad(p1, is[0]) + is[0].det(p2)) / 2; } if (b2) { return (p1.det(is[1]) + r * r * rad(is[1], p2)) / 2; } return p1.det(p2) / 2; } bool parallel(L l0, L l1) { return sign(l0.dir().det(l1.dir())) == 0; } // 极角排序 bool cmp(P a, P b) { if (a.quad() != b.quad()) { return a.quad() < b.quad(); } else { return sign(a.det(b)) > 0; } } bool sameDir(L l0, L l1) { return parallel(l0, l1) && sign(l0.dir().dot(l1.dir())) == 1; } bool operator<(L l0, L l1) { if (sameDir(l0, l1)) { return l1.include(l0[0]); } else { return cmp(l0.dir(), l1.dir()); } } bool check(L u, L v, L w) { return w.include(isLL(u, v)); } // 半平面交 vector<P> halfPlaneIS(vector<L> &l) { sort(l.begin(), l.end()); deque<L> q; for (int i = 0; i < (int)l.size(); ++i) { if (i && sameDir(l[i], l[i - 1])) continue; while (q.size() > 1 && !check(q[q.size() - 2], q[q.size() - 1], l[i])) q.pop_back(); while (q.size() > 1 && !check(q[1], q[0], l[i])) q.pop_front(); q.push_back(l[i]); } while (q.size() > 2 && !check(q[q.size() - 2], q[q.size() - 1], q[0])) q.pop_back(); while (q.size() > 2 && !check(q[1], q[0], q[q.size() - 1])) q.pop_front(); vector<P> ret; for (int i = 0; i < (int)q.size(); ++i) ret.push_back(isLL(q[i], q[(i + 1) % q.size()])); return ret; } // 内心,角平分线的交点 P inCenter(P A, P B, P C) { db a = (B - C).abs(), b = (C - A).abs(), c = (A - B).abs(); return (A * a + B * b + C * c) / (a + b + c); } // 外心,垂直平分线的交点 P circumCenter(P a, P b, P c) { P bb = b - a, cc = c - a; db ab = bb.abs2(), dc = cc.abs2(), d = 2 * bb.det(cc); return a - P(bb.y * dc - cc.y * ab, cc.x * ab - bb.x * dc) / d; } // 垂心,垂线的交点 P orthoCenter(P a, P b, P c) { P ba = b - a, ca = c - a, bc = b - c; db Y = ba.y * ca.y * bc.y, A = ca.x * ba.y - ba.x * ca.y, x0 = (Y + ca.x * ba.y * b.x - ba.x * ca.y * c.x) / A, y0 = -ba.x * (x0 - c.x) / ba.y + ca.y; return {x0, y0}; } /* p 是在ABC外接圆的内部还是外部 -1 外部, 0 边界, 1内部 WARNING: 注意 ^ 4 溢出 */ int outcircle_side(P A, P B, P C, P p) { db d = (B - A).det(C - A); assert(d != 0); if (d < 0) swap(B, C); array<P, 3> pts = {A, B, C}; array<array<db, 3>, 3> mat; for (int i = 0; i < 3; i++) { db dx = pts[i].x - p.x, dy = pts[i].y - p.y; mat[i][0] = dx, mat[i][1] = dy, mat[i][2] = dx * dx + dy * dy; } db det = 0; det += mat[0][0] * (mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1]); det += mat[0][1] * (mat[1][2] * mat[2][0] - mat[1][0] * mat[2][2]); det += mat[0][2] * (mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0]); if (det == 0) return 0; return (det > 0 ? 1 : -1); } } // namespace Geometry using namespace Geometry; bool run() { std::vector<P> ps(4); for (auto &p : ps) p.read(); if (ps[0] == ps[2] && ps[1] == ps[3]) { return true; } P a = ps[1] - ps[0]; P b = ps[3] - ps[2]; if (a.det(b) != 0) return false; if (a.dot(b) <= 0) return false; return (a.dot(a) > b.dot(b)); } int main(int, char **) { #ifdef LOCAL ChronoTimer chrono; freopen("../src/input.txt", "r", stdin); freopen("../src/output.txt", "w", stdout); #endif std::cout << fixed << setprecision(12); std::cin.tie(nullptr)->sync_with_stdio(false); int T; std::cin >> T; while (T--) { std::cout << (run() ? "Yes\n" : "No\n"); } #ifdef LOCAL print("\nRunning Time:", chrono.elapsed(), "ms"); #endif }