#pragma GCC optimize("O2") #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define int ll #define INT128_MAX (__int128)(((unsigned __int128) 1 << ((sizeof(__int128) * __CHAR_BIT__) - 1)) - 1) #define INT128_MIN (-INT128_MAX - 1) #define clock chrono::steady_clock::now().time_since_epoch().count() #ifdef DEBUG #define dbg(x) cout << (#x) << " = " << x << '\n' #else #define dbg(x) #endif namespace R = std::ranges; namespace V = std::views; using namespace std; using ll = long long; using ull = unsigned long long; using ldb = long double; using pii = pair; using pll = pair; //#define double ldb template ostream& operator<<(ostream& os, const pair pr) { return os << pr.first << ' ' << pr.second; } template ostream& operator<<(ostream& os, const array &arr) { for(const T &X : arr) os << X << ' '; return os; } template ostream& operator<<(ostream& os, const vector &vec) { for(const T &X : vec) os << X << ' '; return os; } template ostream& operator<<(ostream& os, const set &s) { for(const T &x : s) os << x << ' '; return os; } template struct fenwickTree { const int size; vector data; fenwickTree(int _size) : size(_size + 1), data(_size + 1) {} fenwickTree(vector &init) : size(ssize(init) + 1), data(ssize(init) + 1) { partial_sum(init.begin(), init.end(), data.begin() + 1); for(int i = size - 1; i > 0; i--) data[i] -= data[i - (i & (-i))]; } void add(int i, T d) { for(i += 1; i < size; i += i & (-i)) data[i] += d; } T query(int i) { T res = T(0); for(i += 1; i > 0; i -= i & (-i)) res += data[i]; return res; } T query(int l, int r) { return query(r - 1) - query(l - 1); } }; signed main() { ios::sync_with_stdio(false), cin.tie(NULL); int n, m, k; cin >> n >> m >> k; vector s(k + 1); for(int &x : s) { cin >> x; x--; } vector>> g(n); for(int i = 0; i < m; i++) { int u, v, w; cin >> u >> v >> w; u--, v--; g[u].push_back({v, w}); g[v].push_back({u, w}); } vector d(n, vector(n, LLONG_MAX)); for(int v = 0; v < n; v++) d[v][v] = 0; for(int u = 0; u < n; u++) for(auto [v, w] : g[u]) d[u][v] = w; for(int i = 0; i < n; i++) for(int j = 0; j < n; j++) for(int k = 0; k < n; k++) if (i != j and i != k and j != k and max(d[j][i], d[i][k]) != LLONG_MAX) d[j][k] = min(d[j][k], d[j][i] + d[i][k]); vector init(k); for(int i = 0; i < k; i++) init[i] = d[s[i]][s[i + 1]]; fenwickTree ft(init); int q; cin >> q; while(q--) { int t, x, y; cin >> t >> x >> y; if (t == 1) { if (x > 0) ft.add(x - 1, -d[s[x - 1]][s[x]]); if (x != k) ft.add(x, -d[s[x]][s[x + 1]]); s[x] = y - 1; if (x > 0) ft.add(x - 1, d[s[x - 1]][s[x]]); if (x != k) ft.add(x, d[s[x]][s[x + 1]]); } else { cout << ft.query(x, y) << '\n'; } } return 0; }