#include namespace zawa { using i16 = std::int16_t; using i32 = std::int32_t; using i64 = std::int64_t; using i128 = __int128_t; using u8 = std::uint8_t; using u16 = std::uint16_t; using u32 = std::uint32_t; using u64 = std::uint64_t; using usize = std::size_t; } // namespace zawa namespace zawa { void SetFastIO() { std::cin.tie(nullptr)->sync_with_stdio(false); } void SetPrecision(u32 dig) { std::cout << std::fixed << std::setprecision(dig); } } // namespace zawa #include namespace zawa { template class FenwickTree { private: using Value = typename Group::Element; usize n_; u32 bitWidth_; std::vector a_, dat_; constexpr i32 lsb(i32 x) const noexcept { return x & -x; } // a[i] <- a[i] + v void addDat(i32 i, const Value& v) { assert(0 <= i and i < static_cast(n_)); for ( i++ ; i < static_cast(dat_.size()) ; i += lsb(i)) { dat_[i] = Group::operation(dat_[i], v); } } // return a[0] + a[1] + .. + a[i - 1] Value product(i32 i) const { assert(0 <= i and i <= static_cast(n_)); Value res{ Group::identity() }; for ( ; i > 0 ; i -= lsb(i)) { res = Group::operation(res, dat_[i]); } return res; } public: FenwickTree() : n_{}, bitWidth_{}, a_{}, dat_{} {} FenwickTree(usize n) : n_{ n }, bitWidth_{ std::__lg(static_cast(n)) + 1 }, a_(n), dat_(n + 1, Group::identity()) { dat_.shrink_to_fit(); } FenwickTree(const std::vector& a) : n_{ a.size() }, bitWidth_{ std::__lg(static_cast(a.size())) + 1 }, a_(a), dat_(a.size() + 1, Group::identity()) { dat_.shrink_to_fit(); for (i32 i{} ; i < static_cast(n_) ; i++) { addDat(i, a[i]); } } // return a[i] const Value& get(usize i) const noexcept { assert(i < n_); return a_[i]; } // return a[i] const Value& operator[](usize i) const noexcept { assert(i < n_); return a_[i]; } usize size() const noexcept { return n_; } // a[i] <- a[i] + v void operation(usize i, const Value& v) { assert(i < n_); addDat(i, v); a_[i] = Group::operation(a_[i], v); } // a[i] <- v void set(usize i, const Value& v) { assert(i < n_); addDat(i, Group::operation(Group::inverse(a_[i]), v)); a_[i] = v; } // return a[0] + a[1] + ... + a[r - 1] Value prefixProduct(usize r) const { assert(r <= n_); return product(r); } // return a[l] + a[l + 1] ... + a[r - 1] Value product(usize l, usize r) const { assert(l <= r and r <= n_); return Group::operation(Group::inverse(product(l)), product(r)); } template u32 maxRight(usize l, const Function& f) const { static_assert(std::is_convertible_v>, "maxRight's argument f must be function bool(T)"); assert(l < n_); Value sum{ Group::inverse(product(l)) }; u32 r{}; for (u32 bit{ bitWidth_ } ; bit ; ) { bit--; u32 nxt{ r | (1u << bit) }; if (nxt < dat_.size() and f(Group::operation(sum, dat_[nxt]))) { sum = Group::operation(sum, dat_[nxt]); r = std::move(nxt); } } assert(l <= r); return r; } template u32 minLeft(usize r, const Function& f) const { static_assert(std::is_convertible_v>, "minLeft's argument f must be function bool(T)"); assert(r <= n_); Value sum{ product(r) }; u32 l{}; for (u32 bit{ bitWidth_ } ; bit ; ) { bit--; u32 nxt{ l | (1u << bit) }; if (nxt <= r and not f(Group::operation(Group::inverse(dat_[nxt]), sum))) { sum = Group::operation(Group::inverse(dat_[nxt]), sum); l = std::move(nxt); } } assert(l <= r); return l; } // debug print friend std::ostream& operator<<(std::ostream& os, const FenwickTree& ft) { for (u32 i{} ; i <= ft.size() ; i++) { os << ft.prefixProduct(i) << (i == ft.size() ? "" : " "); } return os; } }; } // namespace zawa namespace zawa { template class AdditiveGroup { public: using Element = T; static constexpr T identity() noexcept { return T{}; } static constexpr T operation(const T& l, const T& r) noexcept { return l + r; } static constexpr T inverse(const T& v) noexcept { return -v; } }; } // namespace zawa using namespace zawa; int main() { SetFastIO(); int n, m, k; std::cin >> n >> m >> k; std::vector s(k + 1); for (int i{} ; i < k + 1 ; i++) { std::cin >> s[i]; s[i]--; } const long long INF{(long long)1e18}; std::vector g(n, std::vector(n, INF)); for (int i{} ; i < n ; i++) g[i][i] = 0; for (int _{} ; _ < m ; _++) { int u, v; std::cin >> u >> v; u--; v--; long long c; std::cin >> c; g[u][v] = std::min(g[u][v], c); g[v][u] = std::min(g[v][u], c); } for (int v{} ; v < n ; v++) { for (int i{} ; i < n ; i++) { for (int j{} ; j < n ; j++) { g[i][j] = std::min(g[i][v] + g[v][j], g[i][j]); } } } FenwickTree> fen(k); for (int i{1} ; i < k + 1 ; i++) { fen.set(i - 1, g[s[i - 1]][s[i]]); } int q; std::cin >> q; for (int _{} ; _ < q ; _++) { int t; std::cin >> t; if (t == 1) { int x, y; std::cin >> x >> y; y--; if (x) fen.set(x - 1, g[s[x - 1]][y]); if (x + 1 < k + 1) fen.set(x, g[y][s[x + 1]]); s[x] = y; } else if (t == 2) { int x, y; std::cin >> x >> y; long long ans{fen.product(x, y)}; std::cout << ans << '\n'; } else { assert(!"input fail"); } } }