#include const int ROOT = 0; struct Edge { int from; int to; int weight; int profit; int id; }; struct UnionFind { std::vector data; UnionFind(int n): data(n, -1) {} int find(int x) { if (data[x] < 0) return x; return data[x] = find(data[x]); } bool merge(int lhs, int rhs) { lhs = find(lhs); rhs = find(rhs); if (lhs == rhs) return false; if (data[lhs] < data[rhs]) std::swap(lhs, rhs); data[rhs] += data[lhs]; data[lhs] = rhs; return true; } }; std::vector kruskal(int n, std::vector edges) { std::sort(edges.begin(), edges.end(), [](Edge lhs, Edge rhs) { return lhs.weight < rhs.weight; }); UnionFind uf(n); std::vector res; for (auto e: edges) { if (uf.merge(e.from, e.to)) { res.push_back(e); } } return res; } struct SegTree { int n; std::vector data; static constexpr int e = 0; SegTree(int n): n(n), data(2 * n, e) {} void set(int i, int elem) { i += n; data[i] = elem; for (i >>= 1; i > 0; i >>= 1) { data[i] = std::max(data[2 * i], data[2 * i + 1]); } } int prod(int left, int right) { int res = e; for (left += n, right += n; left < right; left >>= 1, right >>= 1) { if (left & 1) res = std::max(res, data[left++]); if (right & 1) res = std::max(res, data[--right]); } return res; } }; struct HLD { std::vector parent, head, in, out, depth; HLD(std::vector>> graph) { int n = graph.size(); { auto dfs = [&](auto self, int u, int p) -> int { int subtree = 1; int max_subtree = 0; int max_i = 0; for (int i = 0; i < (int)graph[u].size(); i++) { auto [v, w] = graph[u][i]; if (v == p) continue; int res = self(self, v, u); subtree += res; if (max_subtree < res) { max_subtree = res; max_i = i; } } if (max_i != 0) { std::swap(graph[u][0], graph[u][max_i]); } return subtree; }; dfs(dfs, ROOT, ROOT); } parent.resize(n); in.resize(n); out.resize(n); head.resize(n, -1); depth.resize(n); int now = 0; auto dfs = [&](auto self, int u, int p) -> void { if (head[u] == -1) { head[u] = u; } in[u] = now++; parent[u] = p; for (int i = 0; i < (int)graph[u].size(); i++) { auto [v, w] = graph[u][i]; if (v == p) continue; if (i == 0) { head[v] = head[u]; } depth[v] = depth[u] + 1; self(self, v, u); } out[u] = now; }; dfs(dfs, ROOT, ROOT); } int edge(int u) { return in[u]; } int lca(int lhs, int rhs) { if (depth[head[lhs]] < depth[head[rhs]]) std::swap(lhs, rhs); while (head[lhs] != head[rhs]) { lhs = parent[head[lhs]]; if (depth[head[lhs]] < depth[head[rhs]]) std::swap(lhs, rhs); } if (depth[lhs] < depth[rhs]) return lhs; return rhs; } std::vector> path(int lhs, int rhs) { int p = lca(lhs, rhs); std::vector> res; for (auto v: {lhs, rhs}) { while (head[p] != head[v]) { res.emplace_back(in[head[v]], in[v] + 1); v = parent[head[v]]; } res.emplace_back(in[p] + 1, in[v] + 1); } return res; } }; int main() { std::cin.tie(0)->sync_with_stdio(0); int n, k; long long c; std::cin >> n >> k >> c; std::vector edges; for (int i = 0; i < k; i++) { int u, v, w, p; std::cin >> u >> v >> w >> p; u--; v--; edges.emplace_back(u, v, w, p, i); } std::vector>> graph(n); auto tree_edges = kruskal(n, edges); long long cost_sum = 0; std::vector used(k); for (auto e: tree_edges) { graph[e.from].emplace_back(e.to, e.weight); graph[e.to].emplace_back(e.from, e.weight); cost_sum += e.weight; used[e.id] = true; } if (cost_sum > c) { std::cout << -1 << '\n'; return 0; } std::vector weights(n); auto dfs = [&](auto self, int u, int p) -> void { for (auto [v, w]: graph[u]) { if (v == p) { weights[u] = w; } else { self(self, v, u); } } }; dfs(dfs, ROOT, ROOT); HLD hld(graph); SegTree segtree(n); for (int i = 1; i < n; i++) { segtree.set(hld.edge(i), weights[i]); } int ans = -1; for (auto e: edges) { if (used[e.id]) { ans = std::max(ans, e.profit); continue; } int max_cost = 0; for (auto [l, r]: hld.path(e.from, e.to)) { max_cost = std::max(max_cost, segtree.prod(l, r)); } if (cost_sum - max_cost + e.weight <= c) { ans = std::max(ans, e.profit); } } std::cout << ans << '\n'; }