N,K,C=map(int,input().split()) par=[i for i in range(N)] rank=[0]*(N) friend=[0]*N block=[0]*N size=[1]*N def find(x): if par[x]==x: return x else: par[x]=find(par[x]) return par[x] #同じ集合か判定 def same(x,y): return find(x)==find(y) def union(x,y): x=find(x) y=find(y) if x==y: return if rank[x]>rank[y]: par[y]=x size[x]+=size[y] else: par[x]=y size[y]+=size[x] if rank[x]==rank[y]: rank[y]+=1 from collections import deque class LowestCommonAncestor: def __init__(self, n): self._n = n self._logn = 0 v = 1 while v <= self._n: v *= 2 self._logn += 1 self._depth = [0] * self._n self._distance = [0] * self._n self._ancestor = [[-1] * self._n for _ in range(self._logn)] self.dp = [[-1] * self._n for _ in range(self._logn)] self._G = [[] for i in range(self._n)] def add_edge(self, u, v, w=1): self._G[u].append((v, w)) self._G[v].append((u, w)) def build(self, root=0): stack = [root] while stack: cur = stack.pop() for nex, w in self._G[cur]: if self._ancestor[0][nex] != cur and self._ancestor[0][cur] != nex: self._ancestor[0][nex] = cur self._depth[nex] = self._depth[cur] + 1 self._distance[nex] = self._distance[cur] + w stack.append(nex) self.dp[0][nex] = w for k in range(1, self._logn): for i in range(self._n): if self._ancestor[k - 1][i] == -1: self._ancestor[k][i] = -1 self.dp[k][i] = self.dp[k-1][i] else: self._ancestor[k][i] = self._ancestor[k - 1][self._ancestor[k - 1][i]] self.dp[k][i] = max(self.dp[k-1][i], self.dp[k-1][self._ancestor[k - 1][i]]) def lca(self, u, v): if self._depth[u] > self._depth[v]: u, v = v, u for k in range(self._logn - 1, -1, -1): if ((self._depth[v] - self._depth[u]) >> k) & 1: v = self._ancestor[k][v] if u == v: return u for k in range(self._logn - 1, -1, -1): if self._ancestor[k][u] != self._ancestor[k][v]: u = self._ancestor[k][u] v = self._ancestor[k][v] return self._ancestor[0][u] def distance(self, u, v): return self._distance[u] + self._distance[v] - 2 * self._distance[self.lca(u, v)] def query(self, a, b): lca = self.lca(a, b) return max(self.max_edge(a, self._depth[a] - self._depth[lca]) , self.max_edge(b, self._depth[b] - self._depth[lca])) def max_edge(self, a, d): now = -10 ** 18 for i in range(self._logn): if (d >> i) & 1: now = max(now, self.dp[i][a]) a = self._ancestor[i][a] return now A=[] for i in range(K): u,v,w,p=map(int,input().split()) u-=1;v-=1 A.append((w,u,v,p)) A=sorted(A) B=[];AA=[] T = LowestCommonAncestor(N) cost=0;pp=0 for w,u,v,p in A: if not same(u,v): union(u,v) AA.append((u,v,w)) T.add_edge(u,v,w) pp=max(p,pp) cost+=w else: B.append((p,u,v,w)) if cost>C: print(-1) exit() ans=pp T.build(0) for p,u,v,w in B: #print(pp,p) #print(cost+w-T.query(u,v)) if cost+w-T.query(u,v)<=C: ans=max(ans,max(p,pp)) print(ans)