#include using namespace std; #define rep(i, n) for (int i = 0; i < (n); i++) #define per(i, n) for (int i = (n)-1; i >= 0; i--) #define rep2(i, l, r) for (int i = (l); i < (r); i++) #define per2(i, l, r) for (int i = (r)-1; i >= (l); i--) #define each(e, v) for (auto &e : v) #define MM << " " << #define pb push_back #define eb emplace_back #define all(x) begin(x), end(x) #define rall(x) rbegin(x), rend(x) #define sz(x) (int)x.size() using ll = long long; using pii = pair; using pil = pair; using pli = pair; using pll = pair; template using minheap = priority_queue, greater>; template using maxheap = priority_queue; template bool chmax(T &x, const T &y) { return (x < y) ? (x = y, true) : false; } template bool chmin(T &x, const T &y) { return (x > y) ? (x = y, true) : false; } template int flg(T x, int i) { return (x >> i) & 1; } int pct(int x) { return __builtin_popcount(x); } int pct(ll x) { return __builtin_popcountll(x); } int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template void print(const vector &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } template void printn(const vector &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << '\n'; } template int lb(const vector &v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template int ub(const vector &v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template void rearrange(vector &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } template vector id_sort(const vector &v, bool greater = false) { int n = v.size(); vector ret(n); iota(begin(ret), end(ret), 0); sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; }); return ret; } template void reorder(vector &a, const vector &ord) { int n = a.size(); vector b(n); for (int i = 0; i < n; i++) b[i] = a[ord[i]]; swap(a, b); } template T floor(T x, T y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x >= 0 ? x / y : (x - y + 1) / y); } template T ceil(T x, T y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x >= 0 ? (x + y - 1) / y : x / y); } template pair operator+(const pair &p, const pair &q) { return make_pair(p.first + q.first, p.second + q.second); } template pair operator-(const pair &p, const pair &q) { return make_pair(p.first - q.first, p.second - q.second); } template istream &operator>>(istream &is, pair &p) { S a; T b; is >> a >> b; p = make_pair(a, b); return is; } template ostream &operator<<(ostream &os, const pair &p) { return os << p.first << ' ' << p.second; } struct io_setup { io_setup() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); cerr << fixed << setprecision(15); } } io_setup; constexpr int inf = (1 << 30) - 1; constexpr ll INF = (1LL << 60) - 1; // constexpr int MOD = 1000000007; constexpr int MOD = 998244353; template struct Dual_Segment_Tree { using O = typename Operator::V; int n, m, height; vector lazy; Dual_Segment_Tree(int n) : n(n) { m = 1, height = 0; while (m < n) m <<= 1, height++; lazy.assign(2 * m, Operator::id); } inline void eval(int i) { if (i < m) { lazy[2 * i] = Operator::merge(lazy[2 * i], lazy[i]); lazy[2 * i + 1] = Operator::merge(lazy[2 * i + 1], lazy[i]); lazy[i] = Operator::id; } } inline void thrust(int i) { for (int j = height; j > 0; j--) eval(i >> j); } void update(int l, int r, const O &x) { l = max(l, 0), r = min(r, n); if (l >= r) return; l += m, r += m; thrust(l), thrust(r - 1); while (l < r) { if (l & 1) lazy[l] = Operator::merge(lazy[l], x), l++; if (r & 1) r--, lazy[r] = Operator::merge(lazy[r], x); l >>= 1, r >>= 1; } } O get(int i) { thrust(i + m); return lazy[i + m]; } O operator[](int i) { return get(i); } }; // sum template struct Plus_Monoid { using V = T; static constexpr V merge(const V &a, const V &b) { return a + b; }; static const V id; }; template const T Plus_Monoid::id = 0; // prod template struct Product_Monoid { using V = T; static constexpr V merge(const V &a, const V &b) { return a * b; }; static const V id; }; template const T Product_Monoid::id = 1; // min template struct Min_Monoid { using V = T; static constexpr V merge(const V &a, const V &b) { return min(a, b); }; static const V id; }; template constexpr T Min_Monoid::id = numeric_limits::max() / 2; // max template struct Max_Monoid { using V = T; static constexpr V merge(V a, V b) { return max(a, b); }; static const V id; }; template constexpr T Max_Monoid::id = -(numeric_limits::max() / 2); // 代入 template struct Update_Monoid { using V = T; static constexpr V merge(const V &a, const V &b) { if (a == id) return b; if (b == id) return a; return b; } static const V id; }; template constexpr T Update_Monoid::id = numeric_limits::max(); // min count (T:最大値の型、S:個数の型) template struct Min_Count_Monoid { using V = pair; static constexpr V merge(const V &a, const V &b) { if (a.first < b.first) return a; if (a.first > b.first) return b; return V(a.first, a.second + b.second); } static const V id; }; template constexpr pair Min_Count_Monoid::id = make_pair(numeric_limits::max() / 2, 0); // max count (T:最大値の型、S:個数の型) template struct Max_Count_Monoid { using V = pair; static constexpr V merge(const V &a, const V &b) { if (a.first > b.first) return a; if (a.first < b.first) return b; return V(a.first, a.second + b.second); } static const V id; }; template constexpr pair Max_Count_Monoid::id = make_pair(-(numeric_limits::max() / 2), 0); // 一次関数 ax+b の合成 (左から順に作用) template struct Affine_Monoid { using V = pair; static constexpr V merge(const V &a, const V &b) { return V(a.first * b.first, a.second * b.first + b.second); }; static const V id; }; template const pair Affine_Monoid::id = make_pair(1, 0); // モノイドの直積 template struct Cartesian_Product_Monoid { using V1 = typename Monoid_1::V; using V2 = typename Monoid_2::V; using V = pair; static constexpr V merge(const V &a, const V &b) { return V(Monoid_1::merge(a.first, b.first), Monoid_2::merge(a.second, b.second)); } static const V id; }; template const pair Cartesian_Product_Monoid::id = make_pair(Monoid_1::id, Monoid_2::id); // 行列積 (l*r) template struct Matrix_Monoid { using V = array, n>; static constexpr V I() { V ret; for (int i = 0; i < n; i++) fill(begin(ret[i]), end(ret[i]), T(0)); for (int i = 0; i < n; i++) ret[i][i] = 1; return ret; } static constexpr V merge(V l, V r) { V ret; for (int i = 0; i < n; i++) fill(begin(ret[i]), end(ret[i]), T(0)); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) ret[i][k] += l[i][j] * r[j][k]; } } return ret; } static const V id; }; template const array, n> Matrix_Monoid::id = Matrix_Monoid::I(); // 行列積 (r*l) template struct Matrix_Monoid_Rev { using V = array, n>; static constexpr V I() { V ret; for (int i = 0; i < n; i++) fill(begin(ret[i]), end(ret[i]), T(0)); for (int i = 0; i < n; i++) ret[i][i] = 1; return ret; } static constexpr V merge(V l, V r) { V ret; for (int i = 0; i < n; i++) fill(begin(ret[i]), end(ret[i]), T(0)); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) ret[i][k] += r[i][j] * l[j][k]; } } return ret; } static const V id; }; template const array, n> Matrix_Monoid_Rev::id = Matrix_Monoid_Rev::I(); // range add range min template struct Min_Plus_Acted_Monoid { using Monoid = Min_Monoid; using Operator = Plus_Monoid; using M = T; using O = T; static constexpr M merge(const M &a, const O &b) { return a + b; }; }; // range add range max template struct Max_Plus_Acted_Monoid { using Monoid = Max_Monoid; using Operator = Plus_Monoid; using M = T; using O = T; static constexpr M merge(const M &a, const O &b) { return a + b; }; }; // range add range min count (T:最小値の型、S:個数の型) template struct Min_Count_Add_Acted_Monoid { using Monoid = Min_Count_Monoid; using Operator = Plus_Monoid; using M = pair; using O = T; static constexpr M merge(const M &a, const O &b) { return make_pair(a.first + b, a.second); }; }; // range add range max count (T:最大値の型、S:個数の型) template struct Max_Count_Add_Acted_Monoid { using Monoid = Max_Count_Monoid; using Operator = Plus_Monoid; using M = pair; using O = T; static constexpr M merge(const M &a, const O &b) { return make_pair(a.first + b, a.second); }; }; // range add range sum template struct Plus_Plus_Acted_Monoid { using Monoid = Cartesian_Product_Monoid, Plus_Monoid>; using Operator = Plus_Monoid; using M = pair; using O = T; static constexpr M merge(const M &a, const O &b) { return M(a.first + b * a.second, a.second); } }; // range update range sum template struct Plus_Update_Acted_Monoid { using Monoid = Cartesian_Product_Monoid, Plus_Monoid>; using Operator = Update_Monoid; using M = pair; using O = T; static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : M(b * a.second, a.second); } }; // range update range min template struct Min_Update_Acted_Monoid { using Monoid = Min_Monoid; using Operator = Update_Monoid; using M = T; using O = T; static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : b; } }; // range update range max template struct Max_Update_Acted_Monoid { using Monoid = Max_Monoid; using Operator = Update_Monoid; using M = T; using O = T; static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : b; } }; // range affine range sum template struct Plus_Affine_Acted_Monoid { using Monoid = Cartesian_Product_Monoid, Plus_Monoid>; using Operator = Affine_Monoid; using M = pair; using O = pair; static constexpr M merge(const M &a, const O &b) { return M(b.first * a.first + b.second * a.second, a.second); }; }; void solve() { int N, A; cin >> N >> A; vector x(N); rep(i, N) cin >> x[i]; auto xs = x; rearrange(xs); int K = sz(xs); Dual_Segment_Tree> seg(K); seg.update(0, K, -1); int T; cin >> T; rep(i, T) { int l, r; cin >> l >> r; r++; l = lb(xs, l), r = lb(xs, r); seg.update(l, r, i + 1); } rep(i, N) { int t = lb(xs, x[i]); cout << seg[t] << '\n'; } } int main() { int T = 1; // cin >> T; while (T--) solve(); }