from random import getrandbits, randrange from string import ascii_lowercase, ascii_uppercase import sys from math import ceil, floor, sqrt, pi, factorial, gcd, log, log10, log2, inf, cos, sin from copy import deepcopy, copy from collections import Counter, deque, defaultdict from heapq import heapify, heappop, heappush from itertools import ( accumulate, chain, product, combinations, combinations_with_replacement, permutations, ) from bisect import bisect, bisect_left, bisect_right from functools import lru_cache, reduce from decimal import Decimal, getcontext from typing import List, Tuple, Optional inf = float("inf") class Inf: def __init__(self, value): self.value = value def __lt__(self, other): return False def __le__(self, other): if isinstance(other, Inf): return True return False def __gt__(self, other): if isinstance(other, Inf): return False return True def __ge__(self, other): return True def __eq__(self, other): return isinstance(other, Inf) and self.value == other.value def __repr__(self): return f"{self.value}" def __add__(self, other): return Inf(self.value) if isinstance(other, Inf) else self def __sub__(self, other): return Inf(self.value) if isinstance(other, Inf) else self def __mul__(self, other): return Inf(self.value) if isinstance(other, Inf) else self def ceil_div(a, b): return (a + b - 1) // b def isqrt(num): res = int(sqrt(num)) while res * res > num: res -= 1 while (res + 1) * (res + 1) <= num: res += 1 return res def int1(s): return int(s) - 1 from types import GeneratorType def bootstrap(f, stack=[]): def wrapped(*args, **kwargs): if stack: return f(*args, **kwargs) else: to = f(*args, **kwargs) while True: if type(to) is GeneratorType: stack.append(to) to = next(to) else: stack.pop() if not stack: break to = stack[-1].send(to) return to return wrapped import sys import os input = lambda: sys.stdin.readline().rstrip("\r\n") print = lambda *args, end="\n", sep=" ": sys.stdout.write( sep.join(map(str, args)) + end ) def II(): return int(input()) def MII(base=0): return map(lambda s: int(s) - base, input().split()) def LII(base=0): return list(MII(base)) def NA(): n = II() a = LII() return n, a def read_graph(n, m, base=0, directed=False, return_edges=False): g = [[] for _ in range(n)] edges = [] for _ in range(m): a, b = MII(base) if return_edges: edges.append((a, b)) g[a].append(b) if not directed: g[b].append(a) if return_edges: return g, edges return g def read_graph_with_weight(n, m, base=0, directed=False, return_edges=False): g = [[] for _ in range(n)] edges = [] for _ in range(m): a, b, w = MII() a, b = a - base, b - base if return_edges: edges.append((a, b, w)) g[a].append((b, w)) if not directed: g[b].append((a, w)) if return_edges: return g, edges return g def read_edges_from_ps(): ps = LII(1) edges = [] for i, p in enumerate(ps, 1): edges.append((p, i)) return edges def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = None def NI(): global tokens if tokens is None: tokens = iterate_tokens() return int(next(tokens)) def LNI(n): return [NI() for _ in range(n)] def yes(res): print("Yes" if res else "No") def YES(res): print("YES" if res else "NO") def pairwise(a): n = len(a) for i in range(n - 1): yield a[i], a[i + 1] def factorial(n): return reduce(lambda x, y: x * y, range(1, n + 1)) def cmin(dp, i, x): if x < dp[i]: dp[i] = x def cmax(dp, i, x): if x > dp[i]: dp[i] = x def alp_a_to_i(s): return ord(s) - ord("a") def alp_A_to_i(s): return ord(s) - ord("A") def alp_i_to_a(i): return chr(ord("a") + i) def alp_i_to_A(i): return chr(ord("A") + i) d4 = [(1, 0), (0, 1), (-1, 0), (0, -1)] d8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)] def ranges(n, m): return ((i, j) for i in range(n) for j in range(m)) def rangess(a, b, c): return ((i, j, k) for i in range(a) for j in range(b) for k in range(c)) def valid(i, j, n, m): return 0 <= i < n and 0 <= j < m def ninj(i, j, n, m): return [(i + di, j + dj) for di, dj in d4 if valid(i + di, j + dj, n, m)] def gen(x, *args): if len(args) == 1: return [x] * args[0] if len(args) == 2: return [[x] * args[1] for _ in [0] * args[0]] if len(args) == 3: return [[[x] * args[2] for _ in [0] * args[1]] for _ in [0] * args[0]] if len(args) == 4: return [ [[[x] * args[3] for _ in [0] * args[2]] for _ in [0] * args[1]] for _ in [0] * args[0] ] list2d = lambda a, b, v: [[v] * b for _ in range(a)] list3d = lambda a, b, c, v: [[[v] * c for _ in range(b)] for _ in range(a)] class Debug: def __init__(self, debug=False): self.debug = debug cur_path = os.path.dirname(os.path.abspath(__file__)) self.local = os.path.exists(cur_path + "/.cph") def get_ic(self): if self.debug and self.local: from icecream import ic return ic else: return lambda *args, **kwargs: ... class LazySegmentTree: def __init__(self, op, e, mapping, composition, id, n_a): self._n = len(n_a) if isinstance(n_a, list) else n_a self.op = op self.e = e self.mapping = mapping self.composition = composition self.id = id self.log = (self._n - 1).bit_length() self.size = 1 << self.log self.d = [e for _ in range(2 * self.size)] self.lz = [id for _ in range(self.size)] if isinstance(n_a, list): self.d[self.size : self.size + self._n] = n_a [self._update(i) for i in reversed(range(1, self.size))] def __repr__(self): l, r = 1, 2 res = [] def np_T(x): return [list(x) for x in zip(*x)] while r <= self.size: res.append(f"{np_T([self.d[l: r], self.lz[l: r]])}") l, r = r, r << 1 res.append(f"{self.d[l: r]}") return "\n".join(res) def set(self, p, x): p += self.size [self._push(p >> i) for i in reversed(range(1, self.log + 1))] self.d[p] = x [self._update(p >> i) for i in range(1, self.log + 1)] def get(self, p): p += self.size [self._push(p >> i) for i in reversed(range(1, self.log + 1))] return self.d[p] __setitem__ = set def __getitem__(self, k): if isinstance(k, slice): l = k.start if k.start is not None else 0 r = k.stop if k.stop is not None else self._n - 1 if l < 0: l += self._n if r < 0: r += self._n if l == 0 and r == self._n - 1: return self.all_prod() return self.prod(l, r + 1) return self.get(k) def prod(self, l, r): if l == r: return self.e l += self.size r += self.size for i in reversed(range(1, self.log + 1)): if ((l >> i) << i) != l: self._push(l >> i) if ((r >> i) << i) != r: self._push((r - 1) >> i) sml, smr = self.e, self.e while l < r: if l & 1: sml = self.op(sml, self.d[l]) l += 1 if r & 1: r -= 1 smr = self.op(self.d[r], smr) l >>= 1 r >>= 1 return self.op(sml, smr) def all_prod(self): return self.d[1] def apply_point(self, p, f): p += self.size [self._push(p >> i) for i in reversed(range(1, self.log + 1))] self.d[p] = self.mapping(f, self.d[p]) [self._update(p >> i) for i in range(1, self.log + 1)] def apply(self, l, r, f): if l == r: return l += self.size r += self.size for i in reversed(range(1, self.log + 1)): if ((l >> i) << i) != l: self._push(l >> i) if ((r >> i) << i) != r: self._push((r - 1) >> i) l2, r2 = l, r while l < r: if l & 1: self._all_apply(l, f) l += 1 if r & 1: r -= 1 self._all_apply(r, f) l >>= 1 r >>= 1 l, r = l2, r2 for i in range(1, self.log + 1): if ((l >> i) << i) != l: self._update(l >> i) if ((r >> i) << i) != r: self._update((r - 1) >> i) def _update(self, k): self.d[k] = self.op(self.d[2 * k], self.d[2 * k + 1]) def _all_apply(self, k, f): self.d[k] = self.mapping(f, self.d[k]) if k < self.size: self.lz[k] = self.composition(f, self.lz[k]) def _push(self, k): self._all_apply(2 * k, self.lz[k]) self._all_apply(2 * k + 1, self.lz[k]) self.lz[k] = self.id INF = 10**16 def sum2(x, y): return (x[0] + y[0], x[1] + y[1]) def add(f, x): return f + x def add2(f, x): return (x[0] + f * x[1], x[1]) def add_comp(f, g): return f + g def update(f, x): return f if f < INF else x def update_min(f, x): return min(f, x) def update2(f, x): return (f * x[1], x[1]) if f < INF else x def update_comp(f, g): return f if f < INF else g class SegmentTree: def __init__(self, n): self.update_cnt = 0 self.n = n self.size = 1 while self.size < n: self.size *= 2 self.node = [(self.update_cnt, 0) for i in range(2 * self.size - 1)] def apply(self, begin, end, val): self.update_cnt += 1 begin += self.size - 1 end += self.size - 1 while begin < end: if (end - 1) & 1: end -= 1 self.node[end] = (self.update_cnt, val) if (begin - 1) & 1: self.node[begin] = (self.update_cnt, val) begin += 1 begin = (begin - 1) // 2 end = (end - 1) // 2 def get(self, i): i += self.size - 1 val = self.node[i] while i > 0: i = (i - 1) // 2 val = max(val, self.node[i]) return val[1] __getitem__ = get class LazySegmentTree: def __init__(self, op, e, mapping, composition, id, n_a): self._n = len(n_a) if isinstance(n_a, list) else n_a self.op = op self.e = e self.mapping = mapping self.composition = composition self.id = id self.log = (self._n - 1).bit_length() self.size = 1 << self.log self.d = [e for _ in range(2 * self.size)] self.lz = [id for _ in range(self.size)] if isinstance(n_a, list): self.d[self.size : self.size + self._n] = n_a [self._update(i) for i in reversed(range(1, self.size))] def __repr__(self): l, r = 1, 2 res = [] def np_T(x): return [list(x) for x in zip(*x)] while r <= self.size: res.append(f"{np_T([self.d[l: r], self.lz[l: r]])}") l, r = r, r << 1 res.append(f"{self.d[l: r]}") return "\n".join(res) def set(self, p, x): p += self.size [self._push(p >> i) for i in reversed(range(1, self.log + 1))] self.d[p] = x [self._update(p >> i) for i in range(1, self.log + 1)] def get(self, p): p += self.size [self._push(p >> i) for i in reversed(range(1, self.log + 1))] return self.d[p] __setitem__ = set def __getitem__(self, k): if isinstance(k, slice): l = k.start if k.start is not None else 0 r = k.stop if k.stop is not None else self._n - 1 if l < 0: l += self._n if r < 0: r += self._n if l == 0 and r == self._n - 1: return self.all_prod() return self.prod(l, r + 1) return self.get(k) def prod(self, l, r): if l == r: return self.e l += self.size r += self.size for i in reversed(range(1, self.log + 1)): if ((l >> i) << i) != l: self._push(l >> i) if ((r >> i) << i) != r: self._push((r - 1) >> i) sml, smr = self.e, self.e while l < r: if l & 1: sml = self.op(sml, self.d[l]) l += 1 if r & 1: r -= 1 smr = self.op(self.d[r], smr) l >>= 1 r >>= 1 return self.op(sml, smr) def all_prod(self): return self.d[1] def apply_point(self, p, f): p += self.size [self._push(p >> i) for i in reversed(range(1, self.log + 1))] self.d[p] = self.mapping(f, self.d[p]) [self._update(p >> i) for i in range(1, self.log + 1)] def apply(self, l, r, f): if l == r: return l += self.size r += self.size for i in reversed(range(1, self.log + 1)): if ((l >> i) << i) != l: self._push(l >> i) if ((r >> i) << i) != r: self._push((r - 1) >> i) l2, r2 = l, r while l < r: if l & 1: self._all_apply(l, f) l += 1 if r & 1: r -= 1 self._all_apply(r, f) l >>= 1 r >>= 1 l, r = l2, r2 for i in range(1, self.log + 1): if ((l >> i) << i) != l: self._update(l >> i) if ((r >> i) << i) != r: self._update((r - 1) >> i) def _update(self, k): self.d[k] = self.op(self.d[2 * k], self.d[2 * k + 1]) def _all_apply(self, k, f): self.d[k] = self.mapping(f, self.d[k]) if k < self.size: self.lz[k] = self.composition(f, self.lz[k]) def _push(self, k): self._all_apply(2 * k, self.lz[k]) self._all_apply(2 * k + 1, self.lz[k]) self.lz[k] = self.id INF = 10**16 def sum2(x, y): return (x[0] + y[0], x[1] + y[1]) def add(f, x): return f + x def add2(f, x): return (x[0] + f * x[1], x[1]) def add_comp(f, g): return f + g def update(f, x): return f if f < INF else x def update_min(f, x): return min(f, x) def update2(f, x): return (f * x[1], x[1]) if f < INF else x def update_comp(f, g): return f if f < INF else g class Discrete: def __init__(self, a=[]): self.nums = set(a) self.d = {} self.n = 0 def add(self, num): self.nums.add(num) def distinct(self): self.n = len(self.nums) self.nums = list(self.nums) self.nums.sort() self.d = dict(zip(self.nums, range(self.n))) def __call__(self, num): return self.d[num] def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.distinct() ic = Debug(1).get_ic() n, _ = MII() xs = LII(1) lrs = [LII(1) for _ in range(II())] with Discrete() as dc: for x in xs: dc.add(x) for l, r in lrs: dc.add(l) dc.add(r) dc.add(r + 1) st = SegmentTree(dc.n + 1) for i, (l, r) in enumerate(lrs, 1): st.apply(dc(l), dc(r) + 1, i) for x in xs: print(st[dc(x)] or -1)