#![allow(non_snake_case)] #![allow(unused_imports)] #![allow(unused_macros)] #![allow(clippy::comparison_chain)] #![allow(clippy::nonminimal_bool)] #![allow(clippy::neg_multiply)] #![allow(clippy::type_complexity)] #![allow(clippy::needless_range_loop)] #![allow(dead_code)] use std::{ cmp::Reverse, collections::{BTreeMap, BTreeSet, BinaryHeap, HashMap, VecDeque}, }; fn main() { let start = std::time::Instant::now(); #[cfg(feature = "local")] { let seed = 1; eprintln!("Seed: {seed}"); rnd::init(seed); } // let time_keeper = TimeKeeper::new(0.9); solve(); #[allow(unused_mut, unused_assignments)] let mut elapsed_time = start.elapsed().as_micros() as f64 * 1e-6; #[cfg(feature = "local")] { eprintln!("Local Mode"); elapsed_time *= 0.55; } eprintln!("Elapsed: {}", (elapsed_time * 1000.0) as usize); } const TARGET: isize = 5e17 as isize; const TURN_MAX: usize = 50; fn solve() { input! { N: usize, mut AB: [(isize, isize); N] } let mut best_score = calc_score(AB[0]); let mut operations = vec![]; let mut turn = 0; while turn < TURN_MAX { let mut cands = vec![]; for i in 1..N { for j in 1..N { if i == j { continue; } let ret = op(AB[i], AB[j]); let ret2 = op(AB[0], ret); let score = calc_score(ret2); if score > best_score { cands.push((score, i, j)); } } } if cands.is_empty() { break; } cands.sort(); let (score, i, j) = cands[cands.len() - 1]; if score > best_score { best_score = score; operations.push((i, j)); operations.push((0, i)); let ret = op(AB[i], AB[j]); let ret2 = op(AB[0], ret); AB[0] = ret2; AB[i] = ret2; AB[j] = ret; } turn += 1; } output(&operations); eprintln!("{}", best_score); } fn op(u: (isize, isize), v: (isize, isize)) -> (isize, isize) { ((u.0 + v.0) / 2, (u.1 + v.1) / 2) } fn calc_score(ab: (isize, isize)) -> usize { let v1 = (ab.0 - TARGET).abs(); let v2 = (ab.1 - TARGET).abs(); let mx = max!(v1, v2) as f64; let score = 2e6 - 1e5 * (mx + 1.0).log10(); score.floor() as usize } fn output(operations: &[(usize, usize)]) { println!("{}", operations.len()); for &(a, b) in operations.iter() { println!("{} {}", a + 1, b + 1); } } #[macro_export] macro_rules! max { ($x: expr) => ($x); ($x: expr, $( $y: expr ),+) => { std::cmp::max($x, max!($( $y ),+)) } } #[macro_export] macro_rules! min { ($x: expr) => ($x); ($x: expr, $( $y: expr ),+) => { std::cmp::min($x, min!($( $y ),+)) } } mod rnd { static mut S: usize = 0; static MAX: usize = 1e9 as usize; #[inline] pub fn init(seed: usize) { unsafe { if seed == 0 { let t = std::time::SystemTime::now() .duration_since(std::time::UNIX_EPOCH) .unwrap() .as_secs() as usize; S = t } else { S = seed; } } } #[inline] pub fn gen() -> usize { unsafe { if S == 0 { init(0); } S ^= S << 7; S ^= S >> 9; S } } #[inline] pub fn gen_range(a: usize, b: usize) -> usize { gen() % (b - a) + a } #[inline] pub fn gen_bool() -> bool { gen() & 1 == 1 } #[inline] pub fn gen_range_isize(a: usize) -> isize { let mut x = (gen() % a) as isize; if gen_bool() { x *= -1; } x } #[inline] pub fn gen_range_neg_wrapping(a: usize) -> usize { let mut x = gen() % a; if gen_bool() { x = x.wrapping_neg(); } x } #[inline] pub fn gen_float() -> f64 { ((gen() % MAX) as f64) / MAX as f64 } } #[derive(Debug, Clone)] struct TimeKeeper { start_time: std::time::Instant, time_threshold: f64, } impl TimeKeeper { fn new(time_threshold: f64) -> Self { TimeKeeper { start_time: std::time::Instant::now(), time_threshold, } } #[inline] fn isTimeOver(&self) -> bool { let elapsed_time = self.start_time.elapsed().as_nanos() as f64 * 1e-9; #[cfg(feature = "local")] { elapsed_time * 0.55 >= self.time_threshold } #[cfg(not(feature = "local"))] { elapsed_time >= self.time_threshold } } #[inline] fn get_time(&self) -> f64 { let elapsed_time = self.start_time.elapsed().as_nanos() as f64 * 1e-9; #[cfg(feature = "local")] { elapsed_time * 0.55 } #[cfg(not(feature = "local"))] { elapsed_time } } } fn join_to_string(v: &[T], sep: &str) -> String { v.iter() .fold("".to_string(), |s, x| s + x.to_string().as_str() + sep) } #[macro_export] macro_rules! input { () => {}; (mut $var:ident: $t:tt, $($rest:tt)*) => { let mut $var = __input_inner!($t); input!($($rest)*) }; ($var:ident: $t:tt, $($rest:tt)*) => { let $var = __input_inner!($t); input!($($rest)*) }; (mut $var:ident: $t:tt) => { let mut $var = __input_inner!($t); }; ($var:ident: $t:tt) => { let $var = __input_inner!($t); }; } #[macro_export] macro_rules! __input_inner { (($($t:tt),*)) => { ($(__input_inner!($t)),*) }; ([$t:tt; $n:expr]) => { (0..$n).map(|_| __input_inner!($t)).collect::>() }; ([$t:tt]) => {{ let n = __input_inner!(usize); (0..n).map(|_| __input_inner!($t)).collect::>() }}; (chars) => { __input_inner!(String).chars().collect::>() }; (bytes) => { __input_inner!(String).into_bytes() }; (usize1) => { __input_inner!(usize) - 1 }; ($t:ty) => { $crate::read::<$t>() }; } #[macro_export] macro_rules! println { () => { $crate::write(|w| { use std::io::Write; std::writeln!(w).unwrap() }) }; ($($arg:tt)*) => { $crate::write(|w| { use std::io::Write; std::writeln!(w, $($arg)*).unwrap() }) }; } #[macro_export] macro_rules! print { ($($arg:tt)*) => { $crate::write(|w| { use std::io::Write; std::write!(w, $($arg)*).unwrap() }) }; } #[macro_export] macro_rules! flush { () => { $crate::write(|w| { use std::io::Write; w.flush().unwrap() }) }; } pub fn read() -> T where T: std::str::FromStr, T::Err: std::fmt::Debug, { use std::cell::RefCell; use std::io::*; thread_local! { pub static STDIN: RefCell> = RefCell::new(stdin().lock()); } STDIN.with(|r| { let mut r = r.borrow_mut(); let mut s = vec![]; loop { let buf = r.fill_buf().unwrap(); if buf.is_empty() { break; } if let Some(i) = buf.iter().position(u8::is_ascii_whitespace) { s.extend_from_slice(&buf[..i]); r.consume(i + 1); if !s.is_empty() { break; } } else { s.extend_from_slice(buf); let n = buf.len(); r.consume(n); } } std::str::from_utf8(&s).unwrap().parse().unwrap() }) } pub fn write(f: F) where F: FnOnce(&mut std::io::BufWriter), { use std::cell::RefCell; use std::io::*; thread_local! { pub static STDOUT: RefCell>> = RefCell::new(BufWriter::new(stdout().lock())); } STDOUT.with(|w| f(&mut w.borrow_mut())) }