#ifndef INCLUDE_MODE #define INCLUDE_MODE // #define REACTIVE // #define USE_GETLINE #endif #ifdef INCLUDE_MAIN #define UPDATE_INTERVAL FOR( k , j_L , j_R ){ interval[k] = {j_L,j_R}; } IN VO Solve() { // グリッド // CEXPR( int , bound_H , 2e3 ); CEXPR( int , bound_W , bound_H ); // ST_AS( ll( bound_H ) * bound_W < ll( 1 ) << 31 ); // CEXPR( int , bound_HW , bound_H * bound_W ); // SET_ASSERT( H , 1 , bound_H ); SET_ASSERT( W , 1 , bound_W ); cin >> H >> W; H_minus = H - 1; W_minus = W - 1; HW = H * W; vector> S( H ); FOR( i , 0 , H ){ string s; cin >> s; auto& Si = S[i]; Si.resize( W ); FOR( j , 0 , W ){ Si[j] = s[j] == '.' ? 1 : 0; } // SetEdgeOnGrid( S[i] , i , e ); // SetWallOnGrid( S[i] , i , non_wall ); } // {i,j}へデコード: EnumHW( v ) // {i,j}をコード: EnumHW_inv( { i , j } ); // (i,j)->(k,h)の方向番号を取得: DirectionNumberOnGrid( i , j , k , h ); // v->wの方向番号を取得: DirectionNumberOnGrid( v , w ); // 方向番号の反転U<->D、R<->L: ReverseDirectionNumberOnGrid( n ); MinSemilattice R{ int(1e8) }; auto o_R = [&]( const int& n , const int& m ){ return R.Product( n , m ); }; AbstractModule X{ 1 , o_R , R }; vector dp( W ); FOREQINV( i , H - 2 , 0 ){ auto& Si = S[i]; DualSqrtDecomposition dp_next{ R , X , vector( W , 1e8 ) }; vector> interval( W ); TPA( j , 0 , j++ , j < W , Si[j] == 1 , , UPDATE_INTERVAL , , , UPDATE_INTERVAL ); FOR( j , 0 , W ){ if( Si[j] == 1 ){ auto& dp_j = dp[j]; auto& [L,R] = interval[j]; dp_next.IntervalAct( max( j - dp_j , L ) , min( j + dp_j , R - 1 ) , dp_j ); } } FOR( j , 0 , W ){ dp[j] = dp_next[j]; } FOR( j , 1 , W ){ if( Si[j-1] == 1 && Si[j] == 1 ){ dp[j] = min( dp[j-1] + 1 , dp[j] ); } } FOREQINV( j , W - 2 , 0 ){ if( Si[j+1] == 1 && Si[j] == 1 ){ dp[j] = min( dp[j+1] + 1 , dp[j] ); } } } FOR( j , 0 , W ){ COUT( dp[j] ); } } REPEAT_MAIN(1); #else // INCLUDE_MAIN #ifdef INCLUDE_SUB // COMPAREに使用。圧縮時は削除する。 ll Naive( int N , int M , int K ) { ll answer = N + M + K; return answer; } // COMPAREに使用。圧縮時は削除する。 ll Answer( ll N , ll M , ll K ) { // START_WATCH; ll answer = N + M + K; // // TLに準じる乱択や全探索。デフォルトの猶予は100.0[ms]。 // CEXPR( double , TL , 2000.0 ); // while( CHECK_WATCH( TL ) ){ // } return answer; } // 圧縮時は中身だけ削除する。 IN VO Experiment() { // CEXPR( int , bound , 10 ); // FOREQ( N , 0 , bound ){ // FOREQ( M , 0 , bound ){ // FOREQ( K , 0 , bound ){ // COUT( N , M , K , ":" , Naive( N , M , K ) ); // } // } // // cout << Naive( N ) << ",\n"[N==bound]; // } } // 圧縮時は中身だけ削除する。 IN VO SmallTest() { // CEXPR( int , bound , 10 ); // FOREQ( N , 0 , bound ){ // FOREQ( M , 0 , bound ){ // FOREQ( K , 0 , bound ){ // COMPARE( N , M , K ); // } // } // // COMPARE( N ); // } } #define INCLUDE_MAIN #include __FILE__ #else // INCLUDE_SUB #ifdef INCLUDE_LIBRARY /* C-x 3 C-x o C-x C-fによるファイル操作用 BFS: c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/compress.txt CoordinateCompress: c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/CoordinateCompress/compress.txt DFSOnTree c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepthFirstSearch/Tree/a.hpp Divisor: c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txt IntervalAddBIT c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/IntervalAdd/compress.txt Polynomial c:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txt UnionFind c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/UnionFindForest/compress.txt */ // VVV 常設でないライブラリは以下に挿入する。 TE CL VirtualMeetSemilattice:VI PU VirtualMonoid{PU:IN U Meet(CO U& u0,CO U& u1);};TE CL MinSemilattice:VI PU VirtualMeetSemilattice,PU PointedSet{PU:IN MinSemilattice(CO U& infty_U);IN U Product(CO U& u0,CO U& u1);};TE CL MaxSemilattice:VI PU VirtualMeetSemilattice,PU PointedSet{PU:IN MaxSemilattice(CO U& zero_U);IN U Product(CO U& u0,CO U& u1);}; TE IN U VirtualMeetSemilattice::Meet(CO U& u0,CO U& u1){RE TH->Product(u0,u1);}TE IN MinSemilattice::MinSemilattice(CO U& infty_U):PointedSet(infty_U){}TE IN MaxSemilattice::MaxSemilattice(CO U& zero_U):PointedSet(zero_U){}TE IN U MinSemilattice::Product(CO U& u0,CO U& u1){RE u0 < u1?u0:u1;} TE IN U MaxSemilattice::Product(CO U& u0,CO U& u1){RE u1 < u0?u0:u1;} TE CL VirtualModule{PU:VI U Action(CO R& r,CO U& u)= 0;IN U PW(CO U& u,CO R& r);IN U ScalarProduct(CO R& r,CO U& u);};TE CL AbstractModule:VI PU VirtualModule,PU GROUP{PU:O_U m_o_U;IN AbstractModule(CO R& dummy,O_U o_U,GROUP M);IN U Action(CO R& r,CO U& u);};TE AbstractModule(CO R& dummy,O_U o_U,GROUP M)-> AbstractModule,O_U,GROUP>;TE CL Module:VI PU VirtualModule,PU AdditiveGroup{PU:IN U Action(CO R& r,CO U& u);}; TE IN AbstractModule::AbstractModule(CO R& dummy,O_U o_U,GROUP M):GROUP(MO(M)),m_o_U(MO(o_U)){ST_AS(is_same_v> && is_invocable_r_v);}TE IN U AbstractModule::Action(CO R& r,CO U& u){RE m_o_U(r,u);}TE IN U Module::Action(CO R& r,CO U& u){RE r * u;}TE IN U VirtualModule::PW(CO U& u,CO R& r){RE Action(r,u);}TE IN U VirtualModule::ScalarProduct(CO R& r,CO U& u){RE Action(r,u);} IN CE int Sqrt(CRI N)NE{if(N <= 1){RE 1;}int left = 0;int right = N;WH(left + 1 < right){int m =(left + right)/ 2;(m <=(N - 1)/ m?left:right)= m;}RE right;} TE CL DualSqrtDecomposition{PU:PT_MAGMA m_L;R_MODULE m_X;int m_N;int m_N_sqrt;int m_N_d;int m_N_m;VE m_a;VE m_b;IN DualSqrtDecomposition(PT_MAGMA L,R_MODULE X,VE a);IN DualSqrtDecomposition(PT_MAGMA L,R_MODULE X,VE a,CRI N_sqrt);TE IN VO Reset(Args&&... args);IN VO Set(CRI i,CO U& u);IN VO Act(CRI i,CO R& r);IN VO IntervalAct(CRI i_start,CRI i_final,CO R& r);IN U OP[](CRI i);IN U Get(CRI i);IN VO Update(CRI d);};TE DualSqrtDecomposition(PT_MAGMA M,R_MODULE X,VE a,Args&&... args)-> DualSqrtDecomposition,PT_MAGMA,U,R_MODULE>; TE IN DualSqrtDecomposition::DualSqrtDecomposition(PT_MAGMA L,R_MODULE X,VE a):m_L(MO(L)),m_X(MO(X)),m_N(a.SZ()),m_N_sqrt(Sqrt(m_N)),m_N_d((m_N + m_N_sqrt - 1)/ m_N_sqrt),m_N_m(m_N_d * m_N_sqrt),m_a(MO(a)),m_b(m_N_d,m_L.Point()){ST_AS(is_same_v> && is_same_v>);}TE IN DualSqrtDecomposition::DualSqrtDecomposition(PT_MAGMA L,R_MODULE X,VE a,CRI N_sqrt):m_L(MO(L)),m_X(MO(X)),m_N(a.SZ()),m_N_sqrt(N_sqrt),m_N_d((m_N + m_N_sqrt - 1)/ m_N_sqrt),m_N_m(m_N_d * m_N_sqrt),m_a(MO(a)),m_b(m_N_d,m_L.Point()){ST_AS(is_same_v> && is_same_v>);}TE TE IN VO DualSqrtDecomposition::Reset(Args&&... args){*TH = DualSqrtDecomposition(MO(m_L),MO(m_X),forward(args)...);}TE IN VO DualSqrtDecomposition::Set(CRI i,CO U& u){U& m_ai = m_a[i];if(m_ai != u){Update(i / m_N_sqrt);m_ai = u;}}TE IN VO DualSqrtDecomposition::IntervalAct(CRI i_start,CRI i_final,CO R& r){if(r != m_L.Point()){CO int i_min = max(i_start,0);CO int i_ulim = min(i_final + 1,m_N);CO int d_0 =(i_min + m_N_sqrt - 1)/ m_N_sqrt;CO int d_1 = max(d_0,i_ulim / m_N_sqrt);CO int i_0 = min(d_0 * m_N_sqrt,i_ulim);CO int i_1 = max(i_0,d_1 * m_N_sqrt);if(d_0 > 0){Update(d_0 - 1);}for(int i = i_min;i < i_0;i++){U& m_ai = m_a[i];m_ai = m_X.Action(r,m_ai);}for(int d = d_0;d < d_1;d++){R& m_bd = m_b[d];m_bd = m_L.Product(r,m_bd);}if(d_1 < m_N_d){Update(d_1);}for(int i = i_1;i < i_ulim;i++){U& m_ai = m_a[i];m_ai = m_X.Action(r,m_ai);}}RE;}TE IN U DualSqrtDecomposition::OP[](CRI i){AS(0 <= i && i < m_N);RE m_X.Action(m_b[i / m_N_sqrt],m_a[i]);}TE IN U DualSqrtDecomposition::Get(CRI i){RE OP[](i);}TE IN VO DualSqrtDecomposition::Update(CRI d){R& m_bd = m_b[d];CO R& point = m_L.Point();if(m_bd != point){CO int j_min = d * m_N_sqrt;CO int j_ulim = min(j_min + m_N_sqrt,m_N);for(int j = j_min;j < j_ulim;j++){U& m_aj = m_a[j];m_aj = m_X.Action(m_bd,m_aj);}m_bd = point;}RE;} // AAA 常設でないライブラリは以上に挿入する。 #define INCLUDE_SUB #include __FILE__ #else // INCLUDE_LIBRARY #ifdef DEBUG #define _GLIBCXX_DEBUG #define REPEAT_MAIN( BOUND ) START_MAIN; signal( SIGABRT , &AlertAbort ); AutoCheck( exec_mode , use_getline ); if( exec_mode == sample_debug_mode || exec_mode == submission_debug_mode || exec_mode == library_search_mode ){ RE 0; } else if( exec_mode == experiment_mode ){ Experiment(); RE 0; } else if( exec_mode == small_test_mode ){ SmallTest(); RE 0; }; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if( exec_mode == solve_mode ){ if CE( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } } else if( exec_mode == random_test_mode ){ CERR( "ランダムテストを行う回数を指定してください。" ); SET_LL( test_case_num ); } FINISH_MAIN #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX ) ); AS( ( MIN ) <= A && A <= ( MAX ) ) #define SET_ASSERT( A , MIN , MAX ) if( exec_mode == solve_mode ){ SET_LL( A ); ASSERT( A , MIN , MAX ); } else if( exec_mode == random_test_mode ){ CERR( #A , " = " , ( A = GetRand( MIN , MAX ) ) ); } else { AS( false ); } #define SOLVE_ONLY ST_AS( __FUNCTION__[0] == 'S' ) #define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl #define COUT( ... ) VariadicCout( cout << "出力: " , __VA_ARGS__ ) << endl #define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl #define COUT_A( A , N ) cout << "出力: "; OUTPUT_ARRAY( cout , A , N ) << endl #define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl #define COUT_ITR( A ) cout << "出力: "; OUTPUT_ITR( cout , A ) << endl #else #pragma GCC optimize ( "O3" ) #pragma GCC optimize ( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if CE( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN #define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) ) #define SET_ASSERT( A , MIN , MAX ) SET_LL( A ); ASSERT( A , MIN , MAX ) #define SOLVE_ONLY #define CERR( ... ) #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL #define CERR_A( A , N ) #define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << ENDL #define CERR_ITR( A ) #define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << ENDL #endif #ifdef REACTIVE #define ENDL endl #else #define ENDL "\n" #endif #ifdef USE_GETLINE #define SET_LL( A ) { GETLINE( A ## _str ); A = stoll( A ## _str ); } #define GETLINE_SEPARATE( SEPARATOR , ... ) SOLVE_ONLY; string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ ) #define GETLINE( ... ) SOLVE_ONLY; GETLINE_SEPARATE( '\n' , __VA_ARGS__ ) #else #define SET_LL( A ) cin >> A #define CIN( LL , ... ) SOLVE_ONLY; LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ ) #define SET_A( A , N ) SOLVE_ONLY; FOR( VARIABLE_FOR_SET_A , 0 , N ){ cin >> A[VARIABLE_FOR_SET_A]; } #define CIN_A( LL , A , N ) VE A( N ); SET_A( A , N ); #endif #include using namespace std; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define FINISH_MAIN REPEAT( test_case_num ){ if CE( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve(); CERR( "" ); } } #define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now() #define CURRENT_TIME static_cast( chrono::duration_cast( chrono::system_clock::now() - watch ).count() / 1000.0 ) #define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 ) #define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE #define SET_A_ASSERT( A , N , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A] , MIN , MAX ); } #define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX ) #define CIN_A_ASSERT( A , N , MIN , MAX ) vector A( N ); SET_A_ASSERT( A , N , MIN , MAX ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( decldecay_t( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( decldecay_t( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( decldecay_t( INITIAL ) VAR = INITIAL ; VAR + 1 > FINAL ; VAR -- ) #define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .BE() , end_ ## ARRAY = ARRAY .EN() #define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES ) #define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ) #define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?"":" "); } OS #define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.BE() , EN_FOR_OUTPUT_ITR = A.EN(); bool VARIABLE_FOR_OUTPUT_ITR = ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; WH( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR = ++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS #define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); RE #define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; COUT( "(" , #__VA_ARGS__ , ") == (" , __VA_ARGS__ , ") : Naive == " , naive , match ? "==" : "!=" , answer , "== Answer" ); if( !match ){ RE; } // 圧縮用 #define TE template #define TY typename #define US using #define ST static #define AS assert #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begin #define EN end #define SZ size #define LE length #define PW Power #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& #define VI virtual #define ST_AS static_assert #define reMO_CO remove_const #define is_COructible_v is_constructible_v #define rBE rbegin #define reSZ resize // 型のエイリアス #define decldecay_t( VAR ) decay_t TE US ret_t = decltype( declval()( declval()... ) ); TE US inner_t = TY T::type; US uint = unsigned int; US ll = long long; US ull = unsigned long long; US ld = long double; US lld = __float128; TE US T2 = pair; TE US T3 = tuple; TE US T4 = tuple; US path = pair; // 入出力用 TE IN basic_istream& VariadicCin( basic_istream& is ) { RE is; } TE IN basic_istream& VariadicCin( basic_istream& is , Arg& arg , ARGS&... args ) { RE VariadicCin( is >> arg , args... ); } TE IN basic_istream& VariadicGetline( basic_istream& is , CO char& separator ) { RE is; } TE IN basic_istream& VariadicGetline( basic_istream& is , CO char& separator , Arg& arg , ARGS&... args ) { RE VariadicGetline( getline( is , arg , separator ) , separator , args... ); } TE IN basic_ostream& operator<<( basic_ostream& os , CO VE& arg ) { auto BE = arg.BE() , EN = arg.EN(); auto itr = BE; WH( itr != EN ){ ( itr == BE ? os : os << " " ) << *itr; itr++; } RE os; } TE IN basic_ostream& operator<<( basic_ostream& os , CO pair& arg ) { RE os << arg.first << " " << arg.second; } TE IN basic_ostream& VariadicCout( basic_ostream& os , CO Arg& arg ) { RE os << arg; } TE IN basic_ostream& VariadicCout( basic_ostream& os , CO Arg1& arg1 , CO Arg2& arg2 , CO ARGS&... args ) { RE VariadicCout( os << arg1 << " " , arg2 , args... ); } // 算術用 TE CE T PositiveBaseResidue( CO T& a , CO T& p ){ RE a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); } TE CE T Residue( CO T& a , CO T& p ){ RE PositiveBaseResidue( a , p < 0 ? -p : p ); } TE CE T PositiveBaseQuotient( CO T& a , CO T& p ){ RE ( a - PositiveBaseResidue( a , p ) ) / p; } TE CE T Quotient( CO T& a , CO T& p ){ RE p < 0 ? PositiveBaseQuotient( -a , -p ) : PositiveBaseQuotient( a , p ); } #define POWER( ANSWER , ARGUMENT , EXPONENT ) \ ST_AS( ! is_same::value && ! is_same::value ); \ decldecay_t( ARGUMENT ) ANSWER{ 1 }; \ { \ decldecay_t( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \ decldecay_t( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ WH( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ ll ANSWER{ 1 }; \ { \ ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( ARGUMENT ) % ( MODULO ) ) % ( MODULO ); \ ARGUMENT_FOR_SQUARE_FOR_POWER < 0 ? ARGUMENT_FOR_SQUARE_FOR_POWER += ( MODULO ) : ARGUMENT_FOR_SQUARE_FOR_POWER; \ decldecay_t( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ WH( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CE_LENGTH , MODULO ) \ ll ANSWER[CE_LENGTH]; \ ll ANSWER_INV[CE_LENGTH]; \ ll INVERSE[CE_LENGTH]; \ { \ ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \ FOREQ( i , 1 , MAX_INDEX ){ \ ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \ } \ ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ FOREQ( i , 2 , MAX_INDEX ){ \ ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % ( MODULO ) ) ) %= ( MODULO ); \ } \ } \ // 二分探索用 // EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= CO_TARGETの整数解を格納。 #define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , CO_TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \ ST_AS( ! is_same::value && ! is_same::value ); \ ll ANSWER = MINIMUM; \ { \ ll L_BS = MINIMUM; \ ll U_BS = MAXIMUM; \ ANSWER = UPDATE_ANSWER; \ ll EXPRESSION_BS; \ CO ll CO_TARGET_BS = ( CO_TARGET ); \ ll DIFFERENCE_BS; \ WH( L_BS < U_BS ){ \ DIFFERENCE_BS = ( EXPRESSION_BS = ( EXPRESSION ) ) - CO_TARGET_BS; \ CERR( "二分探索中:" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS :" , #EXPRESSION , "-" , #CO_TARGET , "=" , EXPRESSION_BS , "-" , CO_TARGET_BS , "=" , DIFFERENCE_BS ); \ if( DIFFERENCE_BS INEQUALITY_FOR_CHECK 0 ){ \ U_BS = UPDATE_U; \ } else { \ L_BS = UPDATE_L; \ } \ ANSWER = UPDATE_ANSWER; \ } \ if( L_BS > U_BS ){ \ CERR( "二分探索失敗:" , "L_BS =" , L_BS , ">" , U_BS , "= U_BS :" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \ CERR( "二分探索マクロにミスがある可能性があります。変更前の版に戻してください。" ); \ ANSWER = MAXIMUM + 1; \ } else { \ CERR( "二分探索終了:" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS" ); \ CERR( "二分探索が成功したかを確認するために" , #EXPRESSION , "を計算します。" ); \ CERR( "成功判定が不要な場合はこの計算を削除しても構いません。" ); \ EXPRESSION_BS = ( EXPRESSION ); \ CERR( "二分探索結果:" , #EXPRESSION , "=" , EXPRESSION_BS , ( EXPRESSION_BS > CO_TARGET_BS ? ">" : EXPRESSION_BS < CO_TARGET_BS ? "<" : "=" ) , CO_TARGET_BS ); \ if( EXPRESSION_BS DESIRED_INEQUALITY CO_TARGET_BS ){ \ CERR( "二分探索成功:" , #ANSWER , ":=" , ANSWER ); \ } else { \ CERR( "二分探索失敗:" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \ CERR( "単調でないか、単調増加性と単調減少性を逆にしてしまったか、探索範囲内に解が存在しません。" ); \ ANSWER = MAXIMUM + 1; \ } \ } \ } \ // 単調増加の時にEXPRESSION >= CO_TARGETの最小解を格納。 #define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , >= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) // 単調増加の時にEXPRESSION <= CO_TARGETの最大解を格納。 #define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , > , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) // 単調減少の時にEXPRESSION >= CO_TARGETの最大解を格納。 #define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , < , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) // 単調減少の時にEXPRESSION <= CO_TARGETの最小解を格納。 #define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , <= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) // t以下の値が存在すればその最大値のiterator、存在しなければend()を返す。 TE IN TY set::iterator MaximumLeq( set& S , CO T& t ) { CO auto EN = S.EN(); if( S.empty() ){ RE EN; } auto itr = S.upper_bound( t ); RE itr == EN ? S.find( *( S.rBE() ) ) : itr == S.BE() ? EN : --itr; } // t未満の値が存在すればその最大値のiterator、存在しなければend()を返す。 TE IN TY set::iterator MaximumLt( set& S , CO T& t ) { CO auto EN = S.EN(); if( S.empty() ){ RE EN; } auto itr = S.lower_bound( t ); RE itr == EN ? S.find( *( S.rBE() ) ) : itr == S.BE() ? EN : --itr; } // t以上の値が存在すればその最小値のiterator、存在しなければend()を返す。 TE IN TY set::iterator MinimumGeq( set& S , CO T& t ) { RE S.lower_bound( t ); } // tより大きい値が存在すればその最小値のiterator、存在しなければend()を返す。 TE IN TY set::iterator MinimumGt( set& S , CO T& t ) { RE S.upper_bound( t ); } // 尺取り法用 // VAR_TPAがINITからUPDATEを繰り返しCONTINUE_CONDITIONを満たす限り、ON_CONDITIONを判定して // trueならON、falseならOFFとなる。直近のONの区間を[VAR_TPA_L,VAR_TPA_R)で管理する。 #define TPA( VAR_TPA , INIT , UPDATE , CONTINUE_CONDITION , ON_CONDITION , ONON , ONOFF , OFFON , OFFOFF , FINISH ) \ { \ auto VAR_TPA = INIT; \ auto VAR_TPA ## _L = VAR_TPA; \ auto VAR_TPA ## _R = VAR_TPA; \ bool on_TPA = false; \ int state_TPA = 3; \ WH( CONTINUE_CONDITION ){ \ bool on_TPA_next = ON_CONDITION; \ state_TPA = ( ( on_TPA ? 1 : 0 ) << 1 ) | ( on_TPA_next ? 1 : 0 ); \ CERR( "尺取り中: [L,R) = [" , VAR_TPA ## _L , "," , VAR_TPA ## _R , ") ," , #VAR_TPA , "=" , VAR_TPA , "," , ( ( state_TPA >> 1 ) & 1 ) == 1 ? "on" : "off" , " ->" , ( state_TPA & 1 ) == 1 ? "on" : "off" ); \ if( state_TPA == 0 ){ \ OFFOFF; VAR_TPA ## _L = VAR_TPA ## _R = VAR_TPA; UPDATE; \ } else if( state_TPA == 1 ){ \ OFFON; VAR_TPA ## _L = VAR_TPA; UPDATE; VAR_TPA ## _R = VAR_TPA; \ } else if( state_TPA == 2 ){ \ ONOFF; VAR_TPA ## _L = VAR_TPA ## _R = VAR_TPA; UPDATE; \ } else { \ ONON; UPDATE; VAR_TPA ## _R = VAR_TPA; \ } \ on_TPA = on_TPA_next; \ } \ CERR( "尺取り終了: [L,R) = [" , VAR_TPA ## _L , "," , VAR_TPA ## _R , ") ," , #VAR_TPA , "=" , VAR_TPA ); \ FINISH; \ } \ // データ構造用 TE TY V> IN V OP+( CO V& a0 , CO V& a1 ) { if( a0.empty() ){ RE a1; } if( a1.empty() ){ RE a0; } AS( a0.SZ() == a1.SZ() ); V answer{}; for( auto itr0 = a0.BE() , itr1 = a1.BE() , EN0 = a0.EN(); itr0 != EN0 ; itr0++ , itr1++ ){ answer.push_back( *itr0 + *itr1 ); } RE answer; } TE IN pair OP+( CO pair& t0 , CO pair& t1 ) { RE { t0.first + t1.first , t0.second + t1.second }; } TE IN tuple OP+( CO tuple& t0 , CO tuple& t1 ) { RE { get<0>( t0 ) + get<0>( t1 ) , get<1>( t0 ) + get<1>( t1 ) , get<2>( t0 ) + get<2>( t1 ) }; } TE IN tuple OP+( CO tuple& t0 , CO tuple& t1 ) { RE { get<0>( t0 ) + get<0>( t1 ) , get<1>( t0 ) + get<1>( t1 ) , get<2>( t0 ) + get<2>( t1 ) , get<3>( t0 ) + get<3>( t1 ) }; } TE IN T Add( CO T& t0 , CO T& t1 ) { RE t0 + t1; } TE IN T XorAdd( CO T& t0 , CO T& t1 ){ RE t0 ^ t1; } TE IN T Multiply( CO T& t0 , CO T& t1 ) { RE t0 * t1; } TE IN CO T& Zero() { ST CO T z{}; RE z; } TE IN CO T& One() { ST CO T o = 1; RE o; }\ TE IN T AddInv( CO T& t ) { RE -t; } TE IN T Id( CO T& v ) { RE v; } TE IN T Min( CO T& a , CO T& b ){ RE a < b ? a : b; } TE IN T Max( CO T& a , CO T& b ){ RE a < b ? b : a; } TE TY V> IN auto Get( CO V& a ) { return [&]( CRI i = 0 ){ RE a[i]; }; } // グリッド問題用 int H , W , H_minus , W_minus , HW; VE> non_wall; IN T2 EnumHW( CRI v ) { RE { v / W , v % W }; } IN int EnumHW_inv( CO T2& ij ) { auto& [i,j] = ij; RE i * W + j; } CO string direction[4] = {"U","R","D","L"}; // (i,j)->(k,h)の方向番号を取得 IN int DirectionNumberOnGrid( CRI i , CRI j , CRI k , CRI h ){RE ik?0:jh?3:(AS(false),-1);} // v->wの方向番号を取得 IN int DirectionNumberOnGrid( CRI v , CRI w ){auto [i,j]=EnumHW(v);auto [k,h]=EnumHW(w);RE DirectionNumberOnGrid(i,j,k,h);} // 方向番号の反転U<->D、R<->L IN int ReverseDirectionNumberOnGrid( CRI n ){AS(0<=n&&n<4);RE(n+2)%4;} IN VO SetEdgeOnGrid( CO string& Si , CRI i , VE>& e , CO char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){int v = EnumHW_inv({i,j});if(i>0){e[EnumHW_inv({i-1,j})].push_back(v);}if(i+10){e[EnumHW_inv({i,j-1})].push_back(v);}if(j+1>& e , CO char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){CO int v=EnumHW_inv({i,j});if(i>0){e[EnumHW_inv({i-1,j})].push_back({v,1});}if(i+10){e[EnumHW_inv({i,j-1})].push_back({v,1});}if(j+1>& non_wall , CO char& walkable = '.' , CO char& unwalkable = '#' ){non_wall.push_back(VE(W));auto& non_wall_i=non_wall[i];FOR(j,0,W){non_wall_i[j]=Si[j]==walkable?true:(assert(Si[j]==unwalkable),false);}} // デバッグ用 #ifdef DEBUG IN VO AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); } VO AutoCheck( int& exec_mode , CO bool& use_getline ); IN VO Solve(); IN VO Experiment(); IN VO SmallTest(); IN VO RandomTest(); ll GetRand( CRL Rand_min , CRL Rand_max ); IN VO BreakPoint( CRI LINE ) {} int exec_mode; CEXPR( int , solve_mode , 0 ); CEXPR( int , sample_debug_mode , 1 ); CEXPR( int , submission_debug_mode , 2 ); CEXPR( int , library_search_mode , 3 ); CEXPR( int , experiment_mode , 4 ); CEXPR( int , small_test_mode , 5 ); CEXPR( int , random_test_mode , 6 ); #ifdef USE_GETLINE CEXPR( bool , use_getline , true ); #else CEXPR( bool , use_getline , false ); #endif #else ll GetRand( CRL Rand_min , CRL Rand_max ) { ll answer = time( NULL ); RE answer * rand() % ( Rand_max + 1 - Rand_min ) + Rand_min; } #endif // VVV 常設ライブラリは以下に挿入する。 // Map // c:/Users/user/Documents/Programming/Mathematics/Function/Map/compress.txt CL is_ordered{PU:is_ordered()= delete;TE ST CE auto Check(CO T& t)-> decltype(t < t,true_type());ST CE false_type Check(...);TE ST CE CO bool value = is_same_v< decltype(Check(declval())),true_type >;}; TE US Map = conditional_t>,unordered_map,conditional_t,map,VO>>; // Algebra // c:/Users/user/Documents/Programming/Mathematics/Algebra/compress.txt #define DC_OF_CPOINT(POINT)IN CO U& POINT()CO NE #define DC_OF_POINT(POINT)IN U& POINT()NE #define DF_OF_CPOINT(POINT)TE IN CO U& VirtualPointedSet::POINT()CO NE{RE Point();} #define DF_OF_POINT(POINT)TE IN U& VirtualPointedSet::POINT()NE{RE Point();} TE CL UnderlyingSet{PU:US type = U;};TE CL VirtualPointedSet:VI PU UnderlyingSet{PU:VI CO U& Point()CO NE = 0;VI U& Point()NE = 0;DC_OF_CPOINT(Unit);DC_OF_CPOINT(Zero);DC_OF_CPOINT(One);DC_OF_CPOINT(Infty);DC_OF_POINT(init);DC_OF_POINT(root);};TE CL PointedSet:VI PU VirtualPointedSet{PU:U m_b_U;IN PointedSet(CO U& b_u = U());IN CO U& Point()CO NE;IN U& Point()NE;};TE CL VirtualNSet:VI PU UnderlyingSet{PU:VI U Transfer(CO U& u)= 0;IN U Inverse(CO U& u);};TE CL AbstractNSet:VI PU VirtualNSet{PU:F_U m_f_U;IN AbstractNSet(F_U f_U);IN U Transfer(CO U& u);};TE CL VirtualMagma:VI PU UnderlyingSet{PU:VI U Product(CO U& u0,CO U& u1)= 0;IN U Sum(CO U& u0,CO U& u1);};TE CL AdditiveMagma:VI PU VirtualMagma{PU:IN U Product(CO U& u0,CO U& u1);};TE CL MultiplicativeMagma:VI PU VirtualMagma{PU:IN U Product(CO U& u0,CO U& u1);};TE CL AbstractMagma:VI PU VirtualMagma{PU:M_U m_m_U;IN AbstractMagma(M_U m_U);IN U Product(CO U& u0,CO U& u1);}; TE IN PointedSet::PointedSet(CO U& b_U):m_b_U(b_U){}TE IN CO U& PointedSet::Point()CO NE{RE m_b_U;}TE IN U& PointedSet::Point()NE{RE m_b_U;}DF_OF_CPOINT(Unit);DF_OF_CPOINT(Zero);DF_OF_CPOINT(One);DF_OF_CPOINT(Infty);DF_OF_POINT(init);DF_OF_POINT(root);TE IN AbstractNSet::AbstractNSet(F_U f_U):m_f_U(MO(f_U)){ST_AS(is_invocable_r_v);}TE IN U AbstractNSet::Transfer(CO U& u){RE m_f_U(u);}TE IN U VirtualNSet::Inverse(CO U& u){RE Transfer(u);}TE IN AbstractMagma::AbstractMagma(M_U m_U):m_m_U(MO(m_U)){ST_AS(is_invocable_r_v);}TE IN U AdditiveMagma::Product(CO U& u0,CO U& u1){RE u0 + u1;}TE IN U MultiplicativeMagma::Product(CO U& u0,CO U& u1){RE u0 * u1;}TE IN U AbstractMagma::Product(CO U& u0,CO U& u1){RE m_m_U(u0,u1);}TE IN U VirtualMagma::Sum(CO U& u0,CO U& u1){RE Product(u0,u1);} TE CL VirtualMonoid:VI PU VirtualMagma,VI PU VirtualPointedSet{};TE CL AdditiveMonoid:VI PU VirtualMonoid,PU AdditiveMagma,PU PointedSet{};TE CL MultiplicativeMonoid:VI PU VirtualMonoid,PU MultiplicativeMagma,PU PointedSet{PU:IN MultiplicativeMonoid(CO U& e_U);};TE CL AbstractMonoid:VI PU VirtualMonoid,PU AbstractMagma,PU PointedSet{PU:IN AbstractMonoid(M_U m_U,CO U& e_U);}; TE IN MultiplicativeMonoid::MultiplicativeMonoid(CO U& e_U):PointedSet(e_U){}TE IN AbstractMonoid::AbstractMonoid(M_U m_U,CO U& e_U):AbstractMagma(MO(m_U)),PointedSet(e_U){} TE CL VirtualGroup:VI PU VirtualMonoid,VI PU VirtualPointedSet,VI PU VirtualNSet{};TE CL AdditiveGroup:VI PU VirtualGroup,PU AdditiveMonoid{PU:IN U Transfer(CO U& u);};TE CL AbstractGroup:VI PU VirtualGroup,PU AbstractMonoid,PU AbstractNSet{PU:IN AbstractGroup(M_U m_U,CO U& e_U,I_U i_U);}; TE IN AbstractGroup::AbstractGroup(M_U m_U,CO U& e_U,I_U i_U):AbstractMonoid(MO(m_U),e_U),AbstractNSet(MO(i_U)){}TE IN U AdditiveGroup::Transfer(CO U& u){RE -u;} // Graph // c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/compress.txt TE CL VirtualGraph:VI PU UnderlyingSet{PU:VI R1 Enumeration(CRI i)= 0;VI R2 Enumeration_inv(CO T& t)= 0;IN VO Reset();VI CRI SZ()CO NE = 0;VI E& edge()NE = 0;VI ret_t Edge(CO T& t)= 0;};TE CL EdgeImplimentation:VI PU VirtualGraph{PU:int m_SZ;E m_edge;IN EdgeImplimentation(CRI SZ,E edge);IN CRI SZ()CO NE;IN E& edge()NE;IN ret_t Edge(CO T& t);};TE CL Graph:PU EdgeImplimentation{PU:IN Graph(CRI SZ,E edge);IN CRI Enumeration(CRI i);IN CRI Enumeration_inv(CRI t);TE IN Graph GetGraph(F edge)CO;};TE CL EnumerationGraph:PU EdgeImplimentation,ret_t,E>{PU:Enum_T m_enum_T;Enum_T_inv m_enum_T_inv;IN EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge);IN ret_t Enumeration(CRI i);IN ret_t Enumeration_inv(CO T& t);TE IN EnumerationGraph GetGraph(F edge)CO;};TE EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge)-> EnumerationGraph()(0)),Enum_T,Enum_T_inv,E>;TE CL MemorisationGraph:PU EdgeImplimentation{PU:int m_LE;VE m_memory;Map m_memory_inv;IN MemorisationGraph(CRI SZ,E edge);IN T Enumeration(CRI i);IN CRI Enumeration_inv(CO T& t);IN VO Reset();TE IN MemorisationGraph GetGraph(F edge)CO;};TE MemorisationGraph(CRI SZ,E edge)-> MemorisationGraph()().back()),E>;TE MemorisationGraph(CRI SZ,E edge)-> MemorisationGraph(declval()().back())),E>; TE IN EdgeImplimentation::EdgeImplimentation(CRI SZ,E edge):m_SZ(SZ),m_edge(MO(edge)){ST_AS(is_COructible_v && is_COructible_v && is_invocable_v);}TE IN Graph::Graph(CRI SZ,E edge):EdgeImplimentation(SZ,MO(edge)){}TE IN EnumerationGraph::EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge):EdgeImplimentation,ret_t,E>(SZ,MO(edge)),m_enum_T(MO(enum_T)),m_enum_T_inv(MO(enum_T_inv)){}TE IN MemorisationGraph::MemorisationGraph(CRI SZ,E edge):EdgeImplimentation(SZ,MO(edge)),m_LE(),m_memory(),m_memory_inv(){ST_AS(is_invocable_v && is_invocable_v);}TE IN CRI Graph::Enumeration(CRI i){RE i;}TE IN ret_t EnumerationGraph::Enumeration(CRI i){RE m_enum_T(i);}TE IN T MemorisationGraph::Enumeration(CRI i){AS(0 <= i && i < m_LE);RE m_memory[i];}TE IN CRI Graph::Enumeration_inv(CRI i){RE i;}TE IN ret_t EnumerationGraph::Enumeration_inv(CO T& t){RE m_enum_T_inv(t);}TE IN CRI MemorisationGraph::Enumeration_inv(CO T& t){if(m_memory_inv.count(t)== 0){AS(m_LE < TH->SZ());m_memory.push_back(t);RE m_memory_inv[t]= m_LE++;}RE m_memory_inv[t];}TE VO VirtualGraph::Reset(){}TE IN VO MemorisationGraph::Reset(){m_LE = 0;m_memory.clear();m_memory_inv.clear();}TE IN CRI EdgeImplimentation::SZ()CO NE{RE m_SZ;}TE IN E& EdgeImplimentation::edge()NE{RE m_edge;}TE IN ret_t EdgeImplimentation::Edge(CO T& t){RE m_edge(t);}TE TE IN Graph Graph::GetGraph(F edge)CO{RE Graph(TH->SZ(),MO(edge));}TE TE IN EnumerationGraph EnumerationGraph::GetGraph(F edge)CO{RE EnumerationGraph(TH->SZ(),m_enum_T,m_enum_T_inv,MO(edge));}TE TE IN MemorisationGraph MemorisationGraph::GetGraph(F edge)CO{RE MemorisationGraph(TH->SZ(),MO(edge));} // ConstexprModulo // c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Mod/ConstexprModulo/compress.txt CEXPR(uint,P,998244353);TE CE INT& RS(INT& n)NE{RE n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n %= M;}TE CE uint& RS(uint& n)NE{RE n %= M;}TE CE ull& RS(ull& n)NE{RE n %= M;}TE CE INT& RSP(INT& n)NE{CE CO uint trunc =(1 << 23)- 1;INT n_u = n >> 23;n &= trunc;INT n_uq =(n_u / 7)/ 17;n_u -= n_uq * 119;n += n_u << 23;RE n < n_uq?n += P - n_uq:n -= n_uq;}TE <> CE ull& RS(ull& n)NE{CE CO ull Pull = P;CE CO ull Pull2 =(Pull - 1)*(Pull - 1);RE RSP(n > Pull2?n -= Pull2:n);}TE CE INT RS(INT&& n)NE{RE MO(RS(n));}TE CE INT RS(CO INT& n)NE{RE RS(INT(n));} #define SFINAE_FOR_MOD(DEFAULT)TY T,enable_if_t>>* DEFAULT #define DC_OF_CM_FOR_MOD(FUNC)CE bool OP FUNC(CO Mod& n)CO NE #define DC_OF_AR_FOR_MOD(FUNC)CE Mod OP FUNC(CO Mod& n)CO NE;TE CE Mod OP FUNC(T&& n)CO NE; #define DF_OF_CM_FOR_MOD(FUNC)TE CE bool Mod::OP FUNC(CO Mod& n)CO NE{RE m_n FUNC n.m_n;} #define DF_OF_AR_FOR_MOD(FUNC,FORMULA)TE CE Mod Mod::OP FUNC(CO Mod& n)CO NE{RE MO(Mod(*TH)FUNC ## = n);}TE TE CE Mod Mod::OP FUNC(T&& n)CO NE{RE FORMULA;}TE CE Mod OP FUNC(T&& n0,CO Mod& n1)NE{RE MO(Mod(forward(n0))FUNC ## = n1);} TE CL Mod{PU:uint m_n;CE Mod()NE;CE Mod(CO Mod& n)NE;CE Mod(Mod& n)NE;CE Mod(Mod&& n)NE;TE CE Mod(CO T& n)NE;TE CE Mod(T& n)NE;TE CE Mod(T&& n)NE;CE Mod& OP=(CO Mod& n)NE;CE Mod& OP=(Mod&& n)NE;CE Mod& OP+=(CO Mod& n)NE;CE Mod& OP-=(CO Mod& n)NE;CE Mod& OP*=(CO Mod& n)NE;IN Mod& OP/=(CO Mod& n);CE Mod& OP<<=(int n)NE;CE Mod& OP>>=(int n)NE;CE Mod& OP++()NE;CE Mod OP++(int)NE;CE Mod& OP--()NE;CE Mod OP--(int)NE;DC_OF_CM_FOR_MOD(==);DC_OF_CM_FOR_MOD(!=);DC_OF_CM_FOR_MOD(<);DC_OF_CM_FOR_MOD(<=);DC_OF_CM_FOR_MOD(>);DC_OF_CM_FOR_MOD(>=);DC_OF_AR_FOR_MOD(+);DC_OF_AR_FOR_MOD(-);DC_OF_AR_FOR_MOD(*);DC_OF_AR_FOR_MOD(/);CE Mod OP<<(int n)CO NE;CE Mod OP>>(int n)CO NE;CE Mod OP-()CO NE;CE Mod& SignInvert()NE;CE Mod& Double()NE;CE Mod& Halve()NE;IN Mod& Invert();TE CE Mod& PositivePW(T&& EX)NE;TE CE Mod& NonNegativePW(T&& EX)NE;TE CE Mod& PW(T&& EX);CE VO swap(Mod& n)NE;CE CRUI RP()CO NE;ST CE Mod DeRP(CRUI n)NE;ST CE uint& Normalise(uint& n)NE;ST IN CO Mod& Inverse(CRUI n)NE;ST IN CO Mod& Factorial(CRUI n)NE;ST IN CO Mod& FactorialInverse(CRUI n)NE;ST IN Mod Combination(CRUI n,CRUI i)NE;ST IN CO Mod& zero()NE;ST IN CO Mod& one()NE;TE CE Mod& Ref(T&& n)NE;}; #define SFINAE_FOR_MN(DEFAULT)TY T,enable_if_t,decay_t>>* DEFAULT #define DC_OF_AR_FOR_MN(FUNC)IN MN OP FUNC(CO MN& n)CO NE;TE IN MN OP FUNC(T&& n)CO NE; #define DF_OF_CM_FOR_MN(FUNC)TE IN bool MN::OP FUNC(CO MN& n)CO NE{RE m_n FUNC n.m_n;} #define DF_OF_AR_FOR_MN(FUNC,FORMULA)TE IN MN MN::OP FUNC(CO MN& n)CO NE{RE MO(MN(*TH)FUNC ## = n);}TE TE IN MN MN::OP FUNC(T&& n)CO NE{RE FORMULA;}TE IN MN OP FUNC(T&& n0,CO MN& n1)NE{RE MO(MN(forward(n0))FUNC ## = n1);} TE CL MN:PU Mod{PU:CE MN()NE;CE MN(CO MN& n)NE;CE MN(MN& n)NE;CE MN(MN&& n)NE;TE CE MN(CO T& n)NE;TE CE MN(T&& n)NE;CE MN& OP=(CO MN& n)NE;CE MN& OP=(MN&& n)NE;CE MN& OP+=(CO MN& n)NE;CE MN& OP-=(CO MN& n)NE;CE MN& OP*=(CO MN& n)NE;IN MN& OP/=(CO MN& n);CE MN& OP<<=(int n)NE;CE MN& OP>>=(int n)NE;CE MN& OP++()NE;CE MN OP++(int)NE;CE MN& OP--()NE;CE MN OP--(int)NE;DC_OF_AR_FOR_MN(+);DC_OF_AR_FOR_MN(-);DC_OF_AR_FOR_MN(*);DC_OF_AR_FOR_MN(/);CE MN OP<<(int n)CO NE;CE MN OP>>(int n)CO NE;CE MN OP-()CO NE;CE MN& SignInvert()NE;CE MN& Double()NE;CE MN& Halve()NE;CE MN& Invert();TE CE MN& PositivePW(T&& EX)NE;TE CE MN& NonNegativePW(T&& EX)NE;TE CE MN& PW(T&& EX);CE uint RP()CO NE;CE Mod Reduce()CO NE;ST CE MN DeRP(CRUI n)NE;ST IN CO MN& Formise(CRUI n)NE;ST IN CO MN& Inverse(CRUI n)NE;ST IN CO MN& Factorial(CRUI n)NE;ST IN CO MN& FactorialInverse(CRUI n)NE;ST IN MN Combination(CRUI n,CRUI i)NE;ST IN CO MN& zero()NE;ST IN CO MN& one()NE;ST CE uint Form(CRUI n)NE;ST CE ull& Reduction(ull& n)NE;ST CE ull& ReducedMU(ull& n,CRUI m)NE;ST CE uint MU(CRUI n0,CRUI n1)NE;ST CE uint BaseSquareTruncation(uint& n)NE;TE CE MN& Ref(T&& n)NE;};TE CE MN Twice(CO MN& n)NE;TE CE MN Half(CO MN& n)NE;TE CE MN Inverse(CO MN& n);TE CE MN PW(MN n,T EX);TE CE MN<2> PW(CO MN<2>& n,CO T& p);TE CE T Square(CO T& t);TE <> CE MN<2> Square>(CO MN<2>& t);TE CE VO swap(MN& n0,MN& n1)NE;TE IN string to_string(CO MN& n)NE;TE IN basic_istream& OP>>(basic_istream& is,MN& n);TE IN basic_ostream& OP<<(basic_ostream& os,CO MN& n); TE CL COantsForMod{PU:COantsForMod()= delete;ST CE CO bool g_even =((M & 1)== 0);ST CE CO uint g_memory_bound = 1000000;ST CE CO uint g_memory_LE = M < g_memory_bound?M:g_memory_bound;ST CE ull MNBasePW(ull&& EX)NE;ST CE uint g_M_minus = M - 1;ST CE uint g_M_minus_2 = M - 2;ST CE uint g_M_minus_2_neg = 2 - M;ST CE CO int g_MN_digit = 32;ST CE CO ull g_MN_base = ull(1)<< g_MN_digit;ST CE CO uint g_MN_base_minus = uint(g_MN_base - 1);ST CE CO uint g_MN_digit_half =(g_MN_digit + 1)>> 1;ST CE CO uint g_MN_base_sqrt_minus =(1 << g_MN_digit_half)- 1;ST CE CO uint g_MN_M_neg_inverse = uint((g_MN_base - MNBasePW((ull(1)<<(g_MN_digit - 1))- 1))& g_MN_base_minus);ST CE CO uint g_MN_base_mod = uint(g_MN_base % M);ST CE CO uint g_MN_base_square_mod = uint(((g_MN_base % M)*(g_MN_base % M))% M);};TE CE ull COantsForMod::MNBasePW(ull&& EX)NE{ull prod = 1;ull PW = M;WH(EX != 0){(EX & 1)== 1?(prod *= PW)&= g_MN_base_minus:prod;EX >>= 1;(PW *= PW)&= g_MN_base_minus;}RE prod;} US MP = Mod

;US MNP = MN

;TE CE uint MN::Form(CRUI n)NE{ull n_copy = n;RE uint(MO(Reduction(n_copy *= COantsForMod::g_MN_base_square_mod)));}TE CE ull& MN::Reduction(ull& n)NE{ull n_sub = n & COantsForMod::g_MN_base_minus;RE((n +=((n_sub *= COantsForMod::g_MN_M_neg_inverse)&= COantsForMod::g_MN_base_minus)*= M)>>= COantsForMod::g_MN_digit)< M?n:n -= M;}TE CE ull& MN::ReducedMU(ull& n,CRUI m)NE{RE Reduction(n *= m);}TE CE uint MN::MU(CRUI n0,CRUI n1)NE{ull n0_copy = n0;RE uint(MO(ReducedMU(ReducedMU(n0_copy,n1),COantsForMod::g_MN_base_square_mod)));}TE CE uint MN::BaseSquareTruncation(uint& n)NE{CO uint n_u = n >> COantsForMod::g_MN_digit_half;n &= COantsForMod::g_MN_base_sqrt_minus;RE n_u;}TE CE MN::MN()NE:Mod(){ST_AS(! COantsForMod::g_even);}TE CE MN::MN(CO MN& n)NE:Mod(n){}TE CE MN::MN(MN& n)NE:Mod(n){}TE CE MN::MN(MN&& n)NE:Mod(MO(n)){}TE TE CE MN::MN(CO T& n)NE:Mod(n){ST_AS(! COantsForMod::g_even);Mod::m_n = Form(Mod::m_n);}TE TE CE MN::MN(T&& n)NE:Mod(forward(n)){ST_AS(! COantsForMod::g_even);Mod::m_n = Form(Mod::m_n);}TE CE MN& MN::OP=(CO MN& n)NE{RE Ref(Mod::OP=(n));}TE CE MN& MN::OP=(MN&& n)NE{RE Ref(Mod::OP=(MO(n)));}TE CE MN& MN::OP+=(CO MN& n)NE{RE Ref(Mod::OP+=(n));}TE CE MN& MN::OP-=(CO MN& n)NE{RE Ref(Mod::OP-=(n));}TE CE MN& MN::OP*=(CO MN& n)NE{ull m_n_copy = Mod::m_n;RE Ref(Mod::m_n = MO(ReducedMU(m_n_copy,n.m_n)));}TE IN MN& MN::OP/=(CO MN& n){RE OP*=(MN(n).Invert());}TE CE MN& MN::OP<<=(int n)NE{RE Ref(Mod::OP<<=(n));}TE CE MN& MN::OP>>=(int n)NE{RE Ref(Mod::OP>>=(n));}TE CE MN& MN::OP++()NE{RE Ref(Mod::Normalise(Mod::m_n += COantsForMod::g_MN_base_mod));}TE CE MN MN::OP++(int)NE{MN n{*TH};OP++();RE n;}TE CE MN& MN::OP--()NE{RE Ref(Mod::m_n < COantsForMod::g_MN_base_mod?((Mod::m_n += M)-= COantsForMod::g_MN_base_mod):Mod::m_n -= COantsForMod::g_MN_base_mod);}TE CE MN MN::OP--(int)NE{MN n{*TH};OP--();RE n;}DF_OF_AR_FOR_MN(+,MN(forward(n))+= *TH);DF_OF_AR_FOR_MN(-,MN(forward(n)).SignInvert()+= *TH);DF_OF_AR_FOR_MN(*,MN(forward(n))*= *TH);DF_OF_AR_FOR_MN(/,MN(forward(n)).Invert()*= *TH);TE CE MN MN::OP<<(int n)CO NE{RE MO(MN(*TH)<<= n);}TE CE MN MN::OP>>(int n)CO NE{RE MO(MN(*TH)>>= n);}TE CE MN MN::OP-()CO NE{RE MO(MN(*TH).SignInvert());}TE CE MN& MN::SignInvert()NE{RE Ref(Mod::m_n > 0?Mod::m_n = M - Mod::m_n:Mod::m_n);}TE CE MN& MN::Double()NE{RE Ref(Mod::Double());}TE CE MN& MN::Halve()NE{RE Ref(Mod::Halve());}TE CE MN& MN::Invert(){assert(Mod::m_n > 0);RE PositivePW(uint(COantsForMod::g_M_minus_2));}TE TE CE MN& MN::PositivePW(T&& EX)NE{MN PW{*TH};(--EX)%= COantsForMod::g_M_minus_2;WH(EX != 0){(EX & 1)== 1?OP*=(PW):*TH;EX >>= 1;PW *= PW;}RE *TH;}TE TE CE MN& MN::NonNegativePW(T&& EX)NE{RE EX == 0?Ref(Mod::m_n = COantsForMod::g_MN_base_mod):PositivePW(forward(EX));}TE TE CE MN& MN::PW(T&& EX){bool neg = EX < 0;assert(!(neg && Mod::m_n == 0));RE neg?PositivePW(forward(EX *= COantsForMod::g_M_minus_2_neg)):NonNegativePW(forward(EX));}TE CE uint MN::RP()CO NE{ull m_n_copy = Mod::m_n;RE MO(Reduction(m_n_copy));}TE CE Mod MN::Reduce()CO NE{ull m_n_copy = Mod::m_n;RE Mod::DeRP(MO(Reduction(m_n_copy)));}TE CE MN MN::DeRP(CRUI n)NE{RE MN(Mod::DeRP(n));}TE IN CO MN& MN::Formise(CRUI n)NE{ST MN memory[COantsForMod::g_memory_LE] ={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr] = DeRP(LE_curr);LE_curr++;}RE memory[n];}TE IN CO MN& MN::Inverse(CRUI n)NE{ST MN memory[COantsForMod::g_memory_LE] ={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr] = MN(Mod::Inverse(LE_curr));LE_curr++;}RE memory[n];}TE IN CO MN& MN::Factorial(CRUI n)NE{ST MN memory[COantsForMod::g_memory_LE] ={one(),one()};ST uint LE_curr = 2;ST MN val_curr{one()};ST MN val_last{one()};WH(LE_curr <= n){memory[LE_curr++] = val_curr *= ++val_last;}RE memory[n];}TE IN CO MN& MN::FactorialInverse(CRUI n)NE{ST MN memory[COantsForMod::g_memory_LE] ={one(),one()};ST uint LE_curr = 2;ST MN val_curr{one()};ST MN val_last{one()};WH(LE_curr <= n){memory[LE_curr] = val_curr *= Inverse(LE_curr);LE_curr++;}RE memory[n];}TE IN MN MN::Combination(CRUI n,CRUI i)NE{RE i <= n?Factorial(n)*FactorialInverse(i)*FactorialInverse(n - i):zero();}TE IN CO MN& MN::zero()NE{ST CE CO MN z{};RE z;}TE IN CO MN& MN::one()NE{ST CE CO MN o{DeRP(1)};RE o;}TE TE CE MN& MN::Ref(T&& n)NE{RE *TH;}TE CE MN Twice(CO MN& n)NE{RE MO(MN(n).Double());}TE CE MN Half(CO MN& n)NE{RE MO(MN(n).Halve());}TE CE MN Inverse(CO MN& n){RE MO(MN(n).Invert());}TE CE MN PW(MN n,T EX){RE MO(n.PW(EX));}TE CE VO swap(MN& n0,MN& n1)NE{n0.swap(n1);}TE IN string to_string(CO MN& n)NE{RE to_string(n.RP())+ " + MZ";}TE IN basic_istream& OP>>(basic_istream& is,MN& n){ll m;is >> m;n = m;RE is;}TE IN basic_ostream& OP<<(basic_ostream& os,CO MN& n){RE os << n.RP();} TE CE Mod::Mod()NE:m_n(){}TE CE Mod::Mod(CO Mod& n)NE:m_n(n.m_n){}TE CE Mod::Mod(Mod& n)NE:m_n(n.m_n){}TE CE Mod::Mod(Mod&& n)NE:m_n(MO(n.m_n)){}TE TE CE Mod::Mod(CO T& n)NE:m_n(RS(n)){}TE TE CE Mod::Mod(T& n)NE:m_n(RS(decay_t(n))){}TE TE CE Mod::Mod(T&& n)NE:m_n(RS(forward(n))){}TE CE Mod& Mod::OP=(CO Mod& n)NE{RE Ref(m_n = n.m_n);}TE CE Mod& Mod::OP=(Mod&& n)NE{RE Ref(m_n = MO(n.m_n));}TE CE Mod& Mod::OP+=(CO Mod& n)NE{RE Ref(Normalise(m_n += n.m_n));}TE CE Mod& Mod::OP-=(CO Mod& n)NE{RE Ref(m_n < n.m_n?(m_n += M)-= n.m_n:m_n -= n.m_n);}TE CE Mod& Mod::OP*=(CO Mod& n)NE{RE Ref(m_n = COantsForMod::g_even?RS(ull(m_n)* n.m_n):MN::MU(m_n,n.m_n));}TE <> CE MP& MP::OP*=(CO MP& n)NE{ull m_n_copy = m_n;RE Ref(m_n = MO((m_n_copy *= n.m_n)< P?m_n_copy:RSP(m_n_copy)));}TE IN Mod& Mod::OP/=(CO Mod& n){RE OP*=(Mod(n).Invert());}TE CE Mod& Mod::OP<<=(int n)NE{WH(n-- > 0){Normalise(m_n <<= 1);}RE *TH;}TE CE Mod& Mod::OP>>=(int n)NE{WH(n-- > 0){((m_n & 1)== 0?m_n:m_n += M)>>= 1;}RE *TH;}TE CE Mod& Mod::OP++()NE{RE Ref(m_n < COantsForMod::g_M_minus?++m_n:m_n = 0);}TE CE Mod Mod::OP++(int)NE{Mod n{*TH};OP++();RE n;}TE CE Mod& Mod::OP--()NE{RE Ref(m_n == 0?m_n = COantsForMod::g_M_minus:--m_n);}TE CE Mod Mod::OP--(int)NE{Mod n{*TH};OP--();RE n;}DF_OF_CM_FOR_MOD(==);DF_OF_CM_FOR_MOD(!=);DF_OF_CM_FOR_MOD(>);DF_OF_CM_FOR_MOD(>=);DF_OF_CM_FOR_MOD(<);DF_OF_CM_FOR_MOD(<=);DF_OF_AR_FOR_MOD(+,Mod(forward(n))+= *TH);DF_OF_AR_FOR_MOD(-,Mod(forward(n)).SignInvert()+= *TH);DF_OF_AR_FOR_MOD(*,Mod(forward(n))*= *TH);DF_OF_AR_FOR_MOD(/,Mod(forward(n)).Invert()*= *TH);TE CE Mod Mod::OP<<(int n)CO NE{RE MO(Mod(*TH)<<= n);}TE CE Mod Mod::OP>>(int n)CO NE{RE MO(Mod(*TH)>>= n);}TE CE Mod Mod::OP-()CO NE{RE MO(Mod(*TH).SignInvert());}TE CE Mod& Mod::SignInvert()NE{RE Ref(m_n > 0?m_n = M - m_n:m_n);}TE CE Mod& Mod::Double()NE{RE Ref(Normalise(m_n <<= 1));}TE CE Mod& Mod::Halve()NE{RE Ref(((m_n & 1)== 0?m_n:m_n += M)>>= 1);}TE IN Mod& Mod::Invert(){assert(m_n > 0);uint m_n_neg;RE m_n < COantsForMod::g_memory_LE?Ref(m_n = Inverse(m_n).m_n):((m_n_neg = M - m_n)< COantsForMod::g_memory_LE)?Ref(m_n = M - Inverse(m_n_neg).m_n):PositivePW(uint(COantsForMod::g_M_minus_2));}TE <> IN Mod<2>& Mod<2>::Invert(){assert(m_n > 0);RE *TH;}TE TE CE Mod& Mod::PositivePW(T&& EX)NE{Mod PW{*TH};EX--;WH(EX != 0){(EX & 1)== 1?OP*=(PW):*TH;EX >>= 1;PW *= PW;}RE *TH;}TE <> TE CE Mod<2>& Mod<2>::PositivePW(T&& EX)NE{RE *TH;}TE TE CE Mod& Mod::NonNegativePW(T&& EX)NE{RE EX == 0?Ref(m_n = 1):Ref(PositivePW(forward(EX)));}TE TE CE Mod& Mod::PW(T&& EX){bool neg = EX < 0;assert(!(neg && Mod::m_n == 0));RE neg?PositivePW(forward(EX *= COantsForMod::g_M_minus_2_neg)):NonNegativePW(forward(EX));}TE IN CO Mod& Mod::Inverse(CRUI n)NE{ST Mod memory[COantsForMod::g_memory_LE] ={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr].m_n = M - MN::MU(memory[M % LE_curr].m_n,M / LE_curr);LE_curr++;}RE memory[n];}TE IN CO Mod& Mod::Factorial(CRUI n)NE{ST Mod memory[COantsForMod::g_memory_LE] ={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr] = MN::Factorial(LE_curr).Reduce();LE_curr++;}RE memory[n];}TE IN CO Mod& Mod::FactorialInverse(CRUI n)NE{ST Mod memory[COantsForMod::g_memory_LE] ={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr] = MN::FactorialInverse(LE_curr).Reduce();LE_curr++;}RE memory[n];}TE IN Mod Mod::Combination(CRUI n,CRUI i)NE{RE MN::Combination(n,i).Reduce();}TE CE VO Mod::swap(Mod& n)NE{std::swap(m_n,n.m_n);}TE CE CRUI Mod::RP()CO NE{RE m_n;}TE CE Mod Mod::DeRP(CRUI n)NE{Mod n_copy{};n_copy.m_n = n;RE n_copy;}TE CE uint& Mod::Normalise(uint& n)NE{RE n < M?n:n -= M;}TE IN CO Mod& Mod::zero()NE{ST CE CO Mod z{};RE z;}TE IN CO Mod& Mod::one()NE{ST CE CO Mod o{DeRP(1)};RE o;}TE TE CE Mod& Mod::Ref(T&& n)NE{RE *TH;}TE CE Mod Twice(CO Mod& n)NE{RE MO(Mod(n).Double());}TE CE Mod Half(CO Mod& n)NE{RE MO(Mod(n).Halve());}TE IN Mod Inverse(CO Mod& n){RE MO(Mod(n).Invert());}TE CE Mod Inverse_COrexpr(CRUI n)NE{RE MO(Mod::DeRP(RS(n)).NonNegativePW(M - 2));}TE CE Mod PW(Mod n,T EX){RE MO(n.PW(EX));}TE CE Mod<2> PW(Mod<2> n,CO T& p){RE p == 0?Mod<2>::one():MO(n);}TE CE VO swap(Mod& n0,Mod& n1)NE{n0.swap(n1);}TE IN string to_string(CO Mod& n)NE{RE to_string(n.RP())+ " + MZ";}TE IN basic_istream& OP>>(basic_istream& is,Mod& n){ll m;is >> m;n = m;RE is;}TE IN basic_ostream& OP<<(basic_ostream& os,CO Mod& n){RE os << n.RP();} // AAA 常設ライブラリは以上に挿入する。 #define INCLUDE_LIBRARY #include __FILE__ #endif // INCLUDE_LIBRARY #endif // INCLUDE_SUB #endif // INCLUDE_MAIN