#ifndef INCLUDE_MODE #define INCLUDE_MODE // #define REACTIVE // #define USE_GETLINE #endif #ifdef INCLUDE_MAIN IN VO Solve() { CIN( int , N ); CIN_A( ll , A , N ); CIN( int , Q ); constexpr PrimeEnumeration pe{}; auto& C = pe.length(); vector t( C , IntervalMultiplyLazySqrtDecomposition{ MultiplicativeMonoid( 1 ) , Module() } ); FOR( c , 0 , C ){ vector factor( N ); FOR( i , 0 , N ){ while( A[i] % pe[c] == 0 ){ A[i] /= pe[c]; factor[i]++; } } t[c].Reset( move( factor ) ); } A.clear(); FOR( q , 0 , Q ){ CIN( int , type ); CIN( ll , l , r , x ); l--; r--; if( type == 1 ){ vector e( C ); FOR( c , 0 , C ){ while( x % pe[c] == 0 ){ x /= pe[c]; e[c]++; } } FOR( c , 0 , C ){ t[c].IntervalSet( l , r , e[c] ); } } else if( type == 2 ){ vector e( C ); FOR( c , 0 , C ){ while( x % pe[c] == 0 ){ x /= pe[c]; e[c]++; } } FOR( c , 0 , C ){ t[c].IntervalMultiply( l , r , e[c] ); } } else if( type == 3 ){ assert( x <= 100 ); ll answer = 1; FOR( c , 0 , C ){ x % pe[c] == 0 ? answer *= t[c].IntervalProduct( l , r ) + 1 : answer; } COUT( answer ); } } } REPEAT_MAIN(1); #else // INCLUDE_MAIN #ifdef INCLUDE_SUB // COMPAREに使用。圧縮時は削除する。 ll Naive( int N , int M , int K ) { ll answer = N + M + K; return answer; } // COMPAREに使用。圧縮時は削除する。 ll Answer( ll N , ll M , ll K ) { // START_WATCH; ll answer = N + M + K; // // TLに準じる乱択や全探索。デフォルトの猶予は100.0[ms]。 // CEXPR( double , TL , 2000.0 ); // while( CHECK_WATCH( TL ) ){ // } return answer; } // 圧縮時は中身だけ削除する。 IN VO Experiment() { // CEXPR( int , bound , 10 ); // FOREQ( N , 0 , bound ){ // FOREQ( M , 0 , bound ){ // FOREQ( K , 0 , bound ){ // COUT( N , M , K , ":" , Naive( N , M , K ) ); // } // } // // cout << Naive( N ) << ",\n"[N==bound]; // } } // 圧縮時は中身だけ削除する。 IN VO SmallTest() { // CEXPR( int , bound , 10 ); // FOREQ( N , 0 , bound ){ // FOREQ( M , 0 , bound ){ // FOREQ( K , 0 , bound ){ // COMPARE( N , M , K ); // } // } // // COMPARE( N ); // } } #define INCLUDE_MAIN #include __FILE__ #else // INCLUDE_SUB #ifdef INCLUDE_LIBRARY /* C-x 3 C-x o C-x C-fによるファイル操作用 BFS (5KB) c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/compress.txt CoordinateCompress (3KB) c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/CoordinateCompress/compress.txt DFSOnTree (11KB) c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepthFirstSearch/Tree/a.hpp Divisor (4KB) c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txt IntervalAddBIT (9KB) c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/IntervalAdd/compress.txt Polynomial (21KB) c:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txt UnionFind (3KB) c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/UnionFindForest/compress.txt */ // VVV 常設でないライブラリは以下に挿入する。 TE CL PrimeEnumeration{PU:bool m_is_composite[val_limit];INT m_val[LE_max];int m_LE;CE PrimeEnumeration();CE CO INT& OP[](CRI n) CO;CE CO INT& Get(CRI n) CO;CE CO bool& IsComposite(CRI i) CO;CE CRI LE() CO NE;}; TE CE PrimeEnumeration::PrimeEnumeration():m_is_composite(),m_val(),m_LE(0){for(INT i = 2;i < val_limit;i++){if(! m_is_composite[i]){INT j = i;WH((j += i)< val_limit){m_is_composite[j] = true;}m_val[m_LE++] = i;if(m_LE >= LE_max){break;}}}}TE CE CO INT& PrimeEnumeration::OP[](CRI n)CO{assert(n < m_LE);RE m_val[n];}TE CE CO INT& PrimeEnumeration::Get(CRI n)CO{RE OP[](n);}TE CE CO bool& PrimeEnumeration::IsComposite(CRI i)CO{assert(i < val_limit);RE m_is_composite[i];}TE CE CRI PrimeEnumeration::LE()CO NE{RE m_LE;} TE VO SetPrimeFactorisation(CO PrimeEnumeration& prime,CO INT1& n,VE& P,VE& EX){INT1 n_copy = n;int i = 0;WH(i < prime.m_LE){CO INT2& p = prime[i];if(p * p > n_copy){break;}if(n_copy % p == 0){P.push_back(p);EX.push_back(1);INT3& EX_back = EX.back();n_copy /= p;WH(n_copy % p == 0){EX_back++;n_copy /= p;}}i++;}if(n_copy != 1){P.push_back(n_copy);EX.push_back(1);}RE;} TE CL VirtualModule{PU:VI U Action(CO R& r,CO U& u)= 0;IN U PW(CO U& u,CO R& r);IN U ScalarProduct(CO R& r,CO U& u);};TE CL AbstractModule:VI PU VirtualModule,PU GROUP{PU:O_U m_o_U;IN AbstractModule(CO R& dummy,O_U o_U,GROUP M);IN U Action(CO R& r,CO U& u);};TE AbstractModule(CO R& dummy,O_U o_U,GROUP M)-> AbstractModule,O_U,GROUP>;TE CL Module:VI PU VirtualModule,PU AdditiveGroup{PU:IN U Action(CO R& r,CO U& u);}; TE IN AbstractModule::AbstractModule(CO R& dummy,O_U o_U,GROUP M):GROUP(MO(M)),m_o_U(MO(o_U)){ST_AS(is_same_v> && is_invocable_r_v);}TE IN U AbstractModule::Action(CO R& r,CO U& u){RE m_o_U(r,u);}TE IN U Module::Action(CO R& r,CO U& u){RE r * u;}TE IN U VirtualModule::PW(CO U& u,CO R& r){RE Action(r,u);}TE IN U VirtualModule::ScalarProduct(CO R& r,CO U& u){RE Action(r,u);} IN CE int Sqrt(CRI N)NE{if(N <= 1){RE 1;}int left = 0;int right = N;WH(left + 1 < right){int m =(left + right)/ 2;(m <=(N - 1)/ m?left:right)= m;}RE right;} TE CL IntervalMultiplyLazySqrtDecomposition{PU:PT_MAGMA m_L;R_MODULE m_M;int m_N;int m_N_sqrt;int m_N_d;int m_N_m;VE m_a;VE m_b;VE m_lazy_substitution;VE m_suspENed;VE m_lazy_action;VE m_lazy_MU;IN IntervalMultiplyLazySqrtDecomposition(PT_MAGMA L,R_MODULE M,CRI N = 0);IN IntervalMultiplyLazySqrtDecomposition(PT_MAGMA L,R_MODULE M,CRI N,CRI N_sqrt);IN IntervalMultiplyLazySqrtDecomposition(PT_MAGMA L,R_MODULE M,VE a);IN IntervalMultiplyLazySqrtDecomposition(PT_MAGMA L,R_MODULE M,VE a,CRI N_sqrt);TE IN VO Reset(Args&&... args);IN VO Set(CRI i,CO U& u);IN VO IntervalSet(CRI i_start,CRI i_final,CO U& u);IN VO IntervalAct(CRI i_start,CRI i_final,CO R& r);IN VO IntervalMultiply(CRI i_start,CRI i_final,CO U& u);IN U OP[](CRI i);IN U Get(CRI i);IN U IntervalProduct(CRI i_start,CRI i_final);IN VO Initialise();IN VO SetProduct(CRI i);IN VO SolveSuspENedSubstitution(CRI d,CO U& u);IN VO IntervalSet_Body(CRI i_min,CRI i_ulim,CO U& u);IN VO SolveSuspENedAction(CRI d);IN VO IntervalAct_Body(CRI i_min,CRI i_ulim,CO R& r);IN VO IntervalMultiply_Body(CRI i_min,CRI i_ulim,CO U& u);IN U IntervalProduct_Body(CRI i_min,CRI i_ulim);};TE IntervalMultiplyLazySqrtDecomposition(PT_MAGMA L,R_MODULE M,CO Args&... args)-> IntervalMultiplyLazySqrtDecomposition,PT_MAGMA,inner_t,R_MODULE>; TE IN IntervalMultiplyLazySqrtDecomposition::IntervalMultiplyLazySqrtDecomposition(PT_MAGMA L,R_MODULE M,CRI N):IntervalMultiplyLazySqrtDecomposition(MO(L),MO(M),N,Sqrt(N)){}TE IN IntervalMultiplyLazySqrtDecomposition::IntervalMultiplyLazySqrtDecomposition(PT_MAGMA L,R_MODULE M,CRI N,CRI N_sqrt):m_L(MO(L)),m_M(MO(M)),m_N(N),m_N_sqrt(N_sqrt),m_N_d((m_N + m_N_sqrt - 1)/ m_N_sqrt),m_N_m(m_N_d * m_N_sqrt),m_a(N,m_M.One()),m_b(m_N_d,m_M.One()),m_lazy_substitution(m_b),m_suspENed(m_N_d),m_lazy_action(m_N_d,m_L.Point()),m_lazy_MU(m_b){Initialise();}TE IN IntervalMultiplyLazySqrtDecomposition::IntervalMultiplyLazySqrtDecomposition(PT_MAGMA L,R_MODULE M,VE a):m_L(MO(L)),m_M(MO(M)),m_N(a.SZ()),m_N_sqrt(Sqrt(m_N)),m_N_d((m_N + m_N_sqrt - 1)/ m_N_sqrt),m_N_m(m_N_d * m_N_sqrt),m_a(MO(a)),m_b(m_N_d,m_M.One()),m_lazy_substitution(m_b),m_suspENed(m_N_d),m_lazy_action(m_N_d,m_L.Point()),m_lazy_MU(m_b){Initialise();}TE IN IntervalMultiplyLazySqrtDecomposition::IntervalMultiplyLazySqrtDecomposition(PT_MAGMA L,R_MODULE M,VE a,CRI N_sqrt):m_L(MO(L)),m_M(MO(M)),m_N(a.SZ()),m_N_sqrt(N_sqrt),m_N_d((m_N + m_N_sqrt - 1)/ m_N_sqrt),m_N_m(m_N_d * m_N_sqrt),m_a(MO(a)),m_b(m_N_d,m_M.One()),m_lazy_substitution(m_b),m_suspENed(m_N_d),m_lazy_action(m_N_d,m_L.Point()),m_lazy_MU(m_b){Initialise();}TE IN VO IntervalMultiplyLazySqrtDecomposition::Initialise(){ST_AS(is_same_v> && is_same_v>);m_a.reSZ(m_N_m,m_M.One());int i_min = 0;int i_ulim = m_N_sqrt;for(int d = 0;d < m_N_d;d++){U& m_bd = m_b[d];for(int i = i_min;i < i_ulim;i++){m_bd = m_M.Product(m_bd,m_a[i]);}i_min = i_ulim;i_ulim += m_N_sqrt;}}TE TE IN VO IntervalMultiplyLazySqrtDecomposition::Reset(Args&&...args){*TH = IntervalMultiplyLazySqrtDecomposition(MO(m_L),MO(m_M),forward(args)...);}TE IN VO IntervalMultiplyLazySqrtDecomposition::Set(CRI i,CO U& u){CO int d = i / m_N_sqrt;CO int i_min = d * m_N_sqrt;CO int i_ulim = i_min + m_N_sqrt;U& m_ai = m_a[i];U& m_bd = m_b[d];if(m_suspENed[d]){U& m_lazy_substitution_d = m_lazy_substitution[d];if(m_lazy_substitution_d != u){SolveSuspENedSubstitution(d,m_lazy_substitution_d);m_ai = u;m_bd = m_M.Product(m_M.PW(m_lazy_substitution_d,m_N_sqrt - 1),u);}}else{SolveSuspENedAction(d);if(m_ai != u){m_ai = u;SetProduct(d);}}RE;}TE IN VO IntervalMultiplyLazySqrtDecomposition::IntervalSet(CRI i_start,CRI i_final,CO U& u){CO int i_min = max(i_start,0);CO int i_ulim = min(i_final + 1,m_N);CO int d_0 =(i_min + m_N_sqrt - 1)/ m_N_sqrt;CO int d_1 = max(d_0,i_ulim / m_N_sqrt);CO int d_0_N_sqrt = d_0 * m_N_sqrt;CO int d_1_N_sqrt = d_1 * m_N_sqrt;CO int i_0 = min(d_0_N_sqrt,i_ulim);CO int i_1 = max(i_0,d_1_N_sqrt);if(i_min < i_0){CO int d_0_minus = d_0 - 1;CO int d_0_N_sqrt_minus = d_0_N_sqrt - m_N_sqrt;U& m_bd = m_b[d_0_minus];VE::reference m_suspENed_d = m_suspENed[d_0_minus];if(m_suspENed_d){U& m_lazy_substitution_d = m_lazy_substitution[d_0_minus];IntervalSet_Body(d_0_N_sqrt_minus,i_min,m_lazy_substitution_d);IntervalSet_Body(i_min,i_0,u);IntervalSet_Body(i_0,d_0_N_sqrt,m_lazy_substitution_d);m_suspENed_d = false;m_bd = m_M.Product(m_M.PW(m_lazy_substitution_d,m_N_sqrt -(i_0 - i_min)),m_M.PW(u,i_0 - i_min));}else{SolveSuspENedAction(d_0_minus);IntervalSet_Body(i_min,i_0,u);m_bd = m_M.Product(m_M.Product(IntervalProduct_Body(d_0_N_sqrt_minus,i_min),m_M.PW(u,i_0 - i_min)),IntervalProduct_Body(i_0,d_0_N_sqrt));}}CO U PW = m_M.PW(u,m_N_sqrt);CO U& one = m_M.One();CO R& point = m_L.Point();for(int d = d_0;d < d_1;d++){m_b[d]= PW;m_lazy_substitution[d]= u;m_suspENed[d]= true;m_lazy_MU[d]= one;m_lazy_action[d]= point;}if(i_1 < i_ulim){CO int d_1_N_sqrt_plus = d_1_N_sqrt + m_N_sqrt;U& m_bd = m_b[d_1];VE::reference m_suspENed_d = m_suspENed[d_1];if(m_suspENed_d){U& m_lazy_substitution_d = m_lazy_substitution[d_1];IntervalSet_Body(d_1_N_sqrt,i_1,m_lazy_substitution_d);IntervalSet_Body(i_1,i_ulim,u);IntervalSet_Body(i_ulim,d_1_N_sqrt_plus,m_lazy_substitution_d);m_suspENed_d = false;m_bd = m_M.Product(m_M.Product(m_M.PW(m_lazy_substitution_d,i_1 - d_1_N_sqrt),m_M.PW(u,i_ulim - i_1)),m_M.PW(m_lazy_substitution_d,d_1_N_sqrt_plus - i_ulim));}else{SolveSuspENedAction(d_1);IntervalSet_Body(i_1,i_ulim,u);m_bd = m_M.Product(m_M.Product(IntervalProduct_Body(d_1_N_sqrt,i_1),m_M.PW(u,i_ulim - i_1)),IntervalProduct_Body(i_ulim,d_1_N_sqrt_plus));}}RE;}TE IN VO IntervalMultiplyLazySqrtDecomposition::IntervalAct(CRI i_start,CRI i_final,CO R& r){CO R& point = m_L.Point();if(r != point){CO U& one = m_M.One();CO int i_min = max(i_start,0);CO int i_ulim = min(i_final + 1,m_N);CO int d_0 =(i_min + m_N_sqrt - 1)/ m_N_sqrt;CO int d_1 = max(d_0,i_ulim / m_N_sqrt);CO int d_0_N_sqrt = d_0 * m_N_sqrt;CO int d_1_N_sqrt = d_1 * m_N_sqrt;CO int i_0 = min(d_0_N_sqrt,i_ulim);CO int i_1 = max(i_0,d_1_N_sqrt);if(i_min < i_0){CO int d_0_minus = d_0 - 1;CO int d_0_N_sqrt_minus = d_0_N_sqrt - m_N_sqrt;VE::reference m_suspENed_d = m_suspENed[d_0_minus];if(m_suspENed_d){U& m_lazy_substitution_d = m_lazy_substitution[d_0_minus];U& m_bd = m_b[d_0_minus];CO U u = m_M.Action(r,m_lazy_substitution_d);IntervalSet_Body(d_0_N_sqrt_minus,i_min,m_lazy_substitution_d);IntervalSet_Body(i_min,i_0,u);IntervalSet_Body(i_0,d_0_N_sqrt,m_lazy_substitution_d);m_suspENed_d = false;m_bd = m_M.Product(m_M.PW(m_lazy_substitution_d,m_N_sqrt -(i_0 - i_min)),m_M.PW(u,i_0 - i_min));}else{R& m_lazy_action_d = m_lazy_action[d_0_minus];if(m_lazy_action_d == point){IntervalAct_Body(i_min,i_0,r);}else{IntervalAct_Body(d_0_N_sqrt_minus,i_min,m_lazy_action_d);IntervalAct_Body(i_min,i_0,m_M.Action(r,m_lazy_action_d));IntervalAct_Body(i_0,d_0_N_sqrt,m_lazy_action_d);m_lazy_action_d = point;}U& m_lazy_MU_d = m_lazy_MU[d_0_minus];if(m_lazy_MU_d != one){IntervalMultiply_Body(d_0_N_sqrt_minus,i_min,m_lazy_MU_d);IntervalMultiply_Body(i_min,i_0,m_M.Action(r,m_lazy_MU_d));IntervalMultiply_Body(i_0,d_0_N_sqrt,m_lazy_MU_d);m_lazy_MU_d = one;}SetProduct(d_0_minus);}}for(int d = d_0;d < d_1;d++){U& m_bd = m_b[d];m_bd = m_M.Action(r,m_bd);if(m_suspENed[d]){U& m_lazy_substitution_d = m_lazy_substitution[d];m_lazy_substitution_d = m_M.Action(r,m_lazy_substitution_d);}else{R& m_lazy_action_d = m_lazy_action[d];m_lazy_action_d = m_M.Action(r,m_lazy_action_d);U& m_lazy_MU_d = m_lazy_MU[d];m_lazy_MU_d = m_M.Action(r,m_lazy_MU_d);}}if(i_1 < i_ulim){CO int d_1_N_sqrt_plus = d_1_N_sqrt + m_N_sqrt;VE::reference m_suspENed_d = m_suspENed[d_1];if(m_suspENed_d){U& m_lazy_substitution_d = m_lazy_substitution[d_1];U& m_bd = m_b[d_1];CO U u = m_M.Action(r,m_lazy_substitution_d);IntervalSet_Body(d_1_N_sqrt,i_1,m_lazy_substitution_d);IntervalSet_Body(i_1,i_ulim,u);IntervalSet_Body(i_ulim,d_1_N_sqrt_plus,m_lazy_substitution_d);m_suspENed_d = false;m_bd = m_M.Product(m_M.PW(m_lazy_substitution_d,m_N_sqrt -(i_ulim - i_1)),m_M.PW(u,i_ulim - i_1));}else{R& m_lazy_action_d = m_lazy_action[d_1];if(m_lazy_action_d == point){IntervalAct_Body(i_1,i_ulim,r);}else{IntervalAct_Body(d_1_N_sqrt,i_1,m_lazy_action_d);IntervalAct_Body(i_1,i_ulim,m_M.Action(r,m_lazy_action_d));IntervalAct_Body(i_ulim,d_1_N_sqrt_plus,m_lazy_action_d);m_lazy_action_d = point;}U& m_lazy_MU_d = m_lazy_MU[d_1];if(m_lazy_MU_d != one){IntervalMultiply_Body(d_1_N_sqrt,i_1,m_lazy_MU_d);IntervalMultiply_Body(i_1,i_ulim,m_M.Action(r,m_lazy_MU_d));IntervalMultiply_Body(i_ulim,d_1_N_sqrt_plus,m_lazy_MU_d);m_lazy_MU_d = one;}SetProduct(d_1);}}}RE;}TE IN VO IntervalMultiplyLazySqrtDecomposition::IntervalMultiply(CRI i_start,CRI i_final,CO U& u){CO U& one = m_M.One();if(u != one){CO R& point = m_L.Point();CO int i_min = max(i_start,0);CO int i_ulim = min(i_final + 1,m_N);CO int d_0 =(i_min + m_N_sqrt - 1)/ m_N_sqrt;CO int d_1 = max(d_0,i_ulim / m_N_sqrt);CO int d_0_N_sqrt = d_0 * m_N_sqrt;CO int d_1_N_sqrt = d_1 * m_N_sqrt;CO int i_0 = min(d_0_N_sqrt,i_ulim);CO int i_1 = max(i_0,d_1_N_sqrt);if(i_min < i_0){CO int d_0_minus = d_0 - 1;CO int d_0_N_sqrt_minus = d_0_N_sqrt - m_N_sqrt;U& m_bd = m_b[d_0_minus];m_bd = m_M.Product(m_bd,m_M.PW(u,i_0 - i_min));VE::reference m_suspENed_d = m_suspENed[d_0_minus];if(m_suspENed_d){U& m_lazy_substitution_d = m_lazy_substitution[d_0_minus];IntervalSet_Body(d_0_N_sqrt_minus,i_min,m_lazy_substitution_d);IntervalSet_Body(i_min,i_0,m_M.Product(m_lazy_substitution_d,u));IntervalSet_Body(i_0,d_0_N_sqrt,m_lazy_substitution_d);m_suspENed_d = false;}else{R& m_lazy_action_d = m_lazy_action[d_0_minus];if(m_lazy_action_d != point){IntervalAct_Body(d_0_N_sqrt_minus,d_0_N_sqrt,m_lazy_action_d);m_lazy_action_d = point;}U& m_lazy_MU_d = m_lazy_MU[d_0_minus];if(m_lazy_MU_d == one){IntervalMultiply_Body(i_min,i_0,u);}else{IntervalMultiply_Body(d_0_N_sqrt_minus,i_min,m_lazy_MU_d);IntervalMultiply_Body(i_min,i_0,m_M.Product(m_lazy_MU_d,u));IntervalMultiply_Body(i_0,d_0_N_sqrt,m_lazy_MU_d);m_lazy_MU_d = one;}}}CO U PW = m_M.PW(u,m_N_sqrt);for(int d = d_0;d < d_1;d++){U& m_bd = m_b[d];m_bd = m_M.Product(m_bd,PW);if(m_suspENed[d]){U& m_lazy_substitution_d = m_lazy_substitution[d];m_lazy_substitution_d = m_M.Product(m_lazy_substitution_d,u);}else{U& m_lazy_MU_d = m_lazy_MU[d];m_lazy_MU_d = m_M.Product(m_lazy_MU_d,u);}}if(i_1 < i_ulim){CO int d_1_N_sqrt_plus = d_1_N_sqrt + m_N_sqrt;U& m_bd = m_b[d_1];m_bd = m_M.Product(m_bd,m_M.PW(u,i_ulim - i_1));VE::reference m_suspENed_d = m_suspENed[d_1];if(m_suspENed_d){U& m_lazy_substitution_d = m_lazy_substitution[d_1];IntervalSet_Body(d_1_N_sqrt,i_1,m_lazy_substitution_d);IntervalSet_Body(i_1,i_ulim,m_M.Product(m_lazy_substitution_d,u));IntervalSet_Body(i_ulim,d_1_N_sqrt_plus,m_lazy_substitution_d);m_suspENed_d = false;}else{R& m_lazy_action_d = m_lazy_action[d_1];if(m_lazy_action_d != point){IntervalAct_Body(d_1_N_sqrt,d_1_N_sqrt_plus,m_lazy_action_d);m_lazy_action_d = point;}U& m_lazy_MU_d = m_lazy_MU[d_1];if(m_lazy_MU_d == one){IntervalMultiply_Body(i_1,i_ulim,u);}else{IntervalMultiply_Body(d_1_N_sqrt,i_1,m_lazy_MU_d);IntervalMultiply_Body(i_1,i_ulim,m_M.Product(m_lazy_MU_d,u));IntervalMultiply_Body(i_ulim,d_1_N_sqrt_plus,m_lazy_MU_d);m_lazy_MU_d = one;}}}}RE;}TE IN U IntervalMultiplyLazySqrtDecomposition::IntervalProduct_Body(CRI i_min,CRI i_ulim){U AN = m_M.One();for(int i = i_min;i < i_ulim;i++){AN = m_M.Product(AN,m_a[i]);}RE AN;}TE IN VO IntervalMultiplyLazySqrtDecomposition::SetProduct(CRI d){U& m_bd = m_b[d]= m_M.One();CO int i_min = d * m_N_sqrt;CO int i_ulim = i_min + m_N_sqrt;for(int i = i_min;i < i_ulim;i++){m_bd = m_M.Product(m_bd,m_a[i]);}RE;}TE IN VO IntervalMultiplyLazySqrtDecomposition::SolveSuspENedSubstitution(CRI d,CO U& u){CO int i_min = d * m_N_sqrt;IntervalSet_Body(i_min,i_min + m_N_sqrt,u);m_suspENed[d]= false;RE;}TE IN VO IntervalMultiplyLazySqrtDecomposition::IntervalSet_Body(CRI i_min,CRI i_ulim,CO U& u){for(int i = i_min;i < i_ulim;i++){m_a[i]= u;}RE;}TE IN VO IntervalMultiplyLazySqrtDecomposition::SolveSuspENedAction(CRI d){CO int i_min = d * m_N_sqrt;CO int i_ulim = i_min + m_N_sqrt;U& m_bd = m_b[d];R& m_lazy_action_d = m_lazy_action[d];if(m_lazy_action_d != m_L.Point()){IntervalAct_Body(i_min,i_ulim,m_lazy_action_d);m_bd = m_M.Action(m_lazy_action_d,m_bd);m_lazy_action_d = m_L.Point();}CO U& one = m_M.One();U& m_lazy_MU_d = m_lazy_MU[d];if(m_lazy_MU_d != one){IntervalMultiply_Body(i_min,i_ulim,m_lazy_MU_d);m_bd = m_M.Product(m_bd,m_M.PW(m_lazy_MU_d,m_N_sqrt));m_lazy_MU_d = one;}RE;}TE IN VO IntervalMultiplyLazySqrtDecomposition::IntervalAct_Body(CRI i_min,CRI i_ulim,CO R& r){for(int i = i_min;i < i_ulim;i++){U& m_ai = m_a[i];m_ai = m_M.Action(r,m_ai);}RE;}TE IN VO IntervalMultiplyLazySqrtDecomposition::IntervalMultiply_Body(CRI i_min,CRI i_ulim,CO U& u){for(int i = i_min;i < i_ulim;i++){U& m_ai = m_a[i];m_ai = m_M.Product(m_ai,u);}RE;}TE IN U IntervalMultiplyLazySqrtDecomposition::Get(CRI i){CO int d = i / m_N_sqrt;RE m_suspENed[d]?m_lazy_substitution[d]:m_M.Product(m_M.Action(m_lazy_action[d],m_a[i]),m_lazy_MU[d]);}TE IN U IntervalMultiplyLazySqrtDecomposition::IntervalProduct(CRI i_start,CRI i_final){CO int i_min = max(i_start,0);CO int i_ulim = min(i_final + 1,m_N);CO int d_0 =(i_min + m_N_sqrt - 1)/ m_N_sqrt;CO int d_1 = max(d_0,i_ulim / m_N_sqrt);CO int i_0 = min(d_0 * m_N_sqrt,i_ulim);CO int i_1 = max(i_0,d_1 * m_N_sqrt);U AN = m_M.One();if(i_min < i_0){CO int d_0_minus = d_0 - 1;AN = m_suspENed[d_0_minus]?m_M.PW(m_lazy_substitution[d_0_minus],i_0 - i_min):m_M.Product(m_M.Action(m_lazy_action[d_0_minus],IntervalProduct_Body(i_min,i_0)),m_M.PW(m_lazy_MU[d_0_minus],i_0 - i_min));}for(int d = d_0;d < d_1;d++){AN = m_M.Product(AN,m_b[d]);}if(i_1 < i_ulim){AN = m_M.Product(AN,m_suspENed[d_1]?m_M.PW(m_lazy_substitution[d_1],i_ulim - i_1):m_M.Product(m_M.Action(m_lazy_action[d_1],IntervalProduct_Body(i_1,i_ulim)),m_M.PW(m_lazy_MU[d_1],i_ulim - i_1)));}RE AN;} // AAA 常設でないライブラリは以上に挿入する。 #define INCLUDE_SUB #include __FILE__ #else // INCLUDE_LIBRARY #ifdef DEBUG #define _GLIBCXX_DEBUG #define REPEAT_MAIN( BOUND ) START_MAIN; signal( SIGABRT , &AlertAbort ); AutoCheck( exec_mode , use_getline ); if( exec_mode == sample_debug_mode || exec_mode == submission_debug_mode || exec_mode == library_search_mode ){ RE 0; } else if( exec_mode == experiment_mode ){ Experiment(); RE 0; } else if( exec_mode == small_test_mode ){ SmallTest(); RE 0; }; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if( exec_mode == solve_mode ){ if CE( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } } else if( exec_mode == random_test_mode ){ CERR( "ランダムテストを行う回数を指定してください。" ); SET_LL( test_case_num ); } FINISH_MAIN #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX ) ); AS( ( MIN ) <= A && A <= ( MAX ) ) #define SET_ASSERT( A , MIN , MAX ) if( exec_mode == solve_mode ){ SET_LL( A ); ASSERT( A , MIN , MAX ); } else if( exec_mode == random_test_mode ){ CERR( #A , " = " , ( A = GetRand( MIN , MAX ) ) ); } else { AS( false ); } #define SOLVE_ONLY ST_AS( __FUNCTION__[0] == 'S' ) #define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl #define COUT( ... ) VariadicCout( cout << "出力: " , __VA_ARGS__ ) << endl #define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl #define COUT_A( A , N ) cout << "出力: "; OUTPUT_ARRAY( cout , A , N ) << endl #define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl #define COUT_ITR( A ) cout << "出力: "; OUTPUT_ITR( cout , A ) << endl #else #pragma GCC optimize ( "O3" ) #pragma GCC optimize ( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if CE( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN #define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) ) #define SET_ASSERT( A , MIN , MAX ) SET_LL( A ); ASSERT( A , MIN , MAX ) #define SOLVE_ONLY #define CERR( ... ) #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL #define CERR_A( A , N ) #define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << ENDL #define CERR_ITR( A ) #define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << ENDL #endif #ifdef REACTIVE #define ENDL endl #else #define ENDL "\n" #endif #ifdef USE_GETLINE #define SET_LL( A ) { GETLINE( A ## _str ); A = stoll( A ## _str ); } #define GETLINE_SEPARATE( SEPARATOR , ... ) SOLVE_ONLY; string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ ) #define GETLINE( ... ) SOLVE_ONLY; GETLINE_SEPARATE( '\n' , __VA_ARGS__ ) #else #define SET_LL( A ) cin >> A #define CIN( LL , ... ) SOLVE_ONLY; LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ ) #define SET_A( A , N ) SOLVE_ONLY; FOR( VARIABLE_FOR_SET_A , 0 , N ){ cin >> A[VARIABLE_FOR_SET_A]; } #define CIN_A( LL , A , N ) VE A( N ); SET_A( A , N ); #endif #include using namespace std; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define FINISH_MAIN REPEAT( test_case_num ){ if CE( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve(); CERR( "" ); } } #define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now() #define CURRENT_TIME static_cast( chrono::duration_cast( chrono::system_clock::now() - watch ).count() / 1000.0 ) #define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 ) #define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE #define SET_A_ASSERT( A , N , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A] , MIN , MAX ); } #define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX ) #define CIN_A_ASSERT( A , N , MIN , MAX ) vector A( N ); SET_A_ASSERT( A , N , MIN , MAX ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( decldecay_t( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( decldecay_t( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( decldecay_t( INITIAL ) VAR = INITIAL ; VAR + 1 > FINAL ; VAR -- ) #define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .BE() , end_ ## ARRAY = ARRAY .EN() #define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES ) #define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ) #define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?"":" "); } OS #define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.BE() , EN_FOR_OUTPUT_ITR = A.EN(); bool VARIABLE_FOR_OUTPUT_ITR = ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; WH( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR = ++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS #define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); RE #define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; COUT( "(" , #__VA_ARGS__ , ") == (" , __VA_ARGS__ , ") : Naive == " , naive , match ? "==" : "!=" , answer , "== Answer" ); if( !match ){ RE; } // 圧縮用 #define TE template #define TY typename #define US using #define ST static #define AS assert #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begind #define EN end #define SZ size #define LE length #define PW Power #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& #define VI virtual #define ST_AS static_assert #define reMO_CO remove_const #define is_COructible_v is_constructible_v #define rBE rbegin #define reSZ resize // 型のエイリアス #define decldecay_t( VAR ) decay_t TE US ret_t = decltype( declval()( declval()... ) ); TE US inner_t = TY T::type; US uint = unsigned int; US ll = long long; US ull = unsigned long long; US ld = long double; US lld = __float128; TE US T2 = pair; TE US T3 = tuple; TE US T4 = tuple; US path = pair; // 入出力用 TE IN basic_istream& VariadicCin( basic_istream& is ) { RE is; } TE IN basic_istream& VariadicCin( basic_istream& is , Arg& arg , ARGS&... args ) { RE VariadicCin( is >> arg , args... ); } TE IN basic_istream& VariadicGetline( basic_istream& is , CO char& separator ) { RE is; } TE IN basic_istream& VariadicGetline( basic_istream& is , CO char& separator , Arg& arg , ARGS&... args ) { RE VariadicGetline( getline( is , arg , separator ) , separator , args... ); } TE IN basic_ostream& operator<<( basic_ostream& os , CO VE& arg ) { auto BE = arg.BE() , EN = arg.EN(); auto itr = BE; WH( itr != EN ){ ( itr == BE ? os : os << " " ) << *itr; itr++; } RE os; } TE IN basic_ostream& operator<<( basic_ostream& os , CO pair& arg ) { RE os << arg.first << " " << arg.second; } TE IN basic_ostream& VariadicCout( basic_ostream& os , CO Arg& arg ) { RE os << arg; } TE IN basic_ostream& VariadicCout( basic_ostream& os , CO Arg1& arg1 , CO Arg2& arg2 , CO ARGS&... args ) { RE VariadicCout( os << arg1 << " " , arg2 , args... ); } // 算術用 TE CE T PositiveBaseResidue( CO T& a , CO T& p ){ RE a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); } TE CE T Residue( CO T& a , CO T& p ){ RE PositiveBaseResidue( a , p < 0 ? -p : p ); } TE CE T PositiveBaseQuotient( CO T& a , CO T& p ){ RE ( a - PositiveBaseResidue( a , p ) ) / p; } TE CE T Quotient( CO T& a , CO T& p ){ RE p < 0 ? PositiveBaseQuotient( -a , -p ) : PositiveBaseQuotient( a , p ); } #define POWER( ANSWER , ARGUMENT , EXPONENT ) \ ST_AS( ! is_same::value && ! is_same::value ); \ decldecay_t( ARGUMENT ) ANSWER{ 1 }; \ { \ decldecay_t( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \ decldecay_t( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ WH( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ ll ANSWER{ 1 }; \ { \ ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( ARGUMENT ) % ( MODULO ) ) % ( MODULO ); \ ARGUMENT_FOR_SQUARE_FOR_POWER < 0 ? ARGUMENT_FOR_SQUARE_FOR_POWER += ( MODULO ) : ARGUMENT_FOR_SQUARE_FOR_POWER; \ decldecay_t( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ WH( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CE_LENGTH , MODULO ) \ ll ANSWER[CE_LENGTH]; \ ll ANSWER_INV[CE_LENGTH]; \ ll INVERSE[CE_LENGTH]; \ { \ ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \ FOREQ( i , 1 , MAX_INDEX ){ \ ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \ } \ ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ FOREQ( i , 2 , MAX_INDEX ){ \ ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % ( MODULO ) ) ) %= ( MODULO ); \ } \ } \ // 二分探索用 // EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= CO_TARGETの整数解を格納。 #define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , CO_TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \ ST_AS( ! is_same::value && ! is_same::value ); \ ll ANSWER = MINIMUM; \ { \ ll L_BS = MINIMUM; \ ll U_BS = MAXIMUM; \ ANSWER = UPDATE_ANSWER; \ ll EXPRESSION_BS; \ CO ll CO_TARGET_BS = ( CO_TARGET ); \ ll DIFFERENCE_BS; \ WH( L_BS < U_BS ){ \ DIFFERENCE_BS = ( EXPRESSION_BS = ( EXPRESSION ) ) - CO_TARGET_BS; \ CERR( "二分探索中:" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS :" , #EXPRESSION , "=" , EXPRESSION_BS , DIFFERENCE_BS > 0 ? ">" : DIFFERENCE_BS < 0 ? "<" : "=" , CO_TARGET_BS , "=" , #CO_TARGET ); \ if( DIFFERENCE_BS INEQUALITY_FOR_CHECK 0 ){ \ U_BS = UPDATE_U; \ } else { \ L_BS = UPDATE_L; \ } \ ANSWER = UPDATE_ANSWER; \ } \ if( L_BS > U_BS ){ \ CERR( "二分探索失敗:" , "L_BS =" , L_BS , ">" , U_BS , "= U_BS :" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \ CERR( "二分探索マクロにミスがある可能性があります。変更前の版に戻してください。" ); \ ANSWER = MAXIMUM + 1; \ } else { \ CERR( "二分探索終了:" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS" ); \ CERR( "二分探索が成功したかを確認するために" , #EXPRESSION , "を計算します。" ); \ CERR( "成功判定が不要な場合はこの計算を削除しても構いません。" ); \ EXPRESSION_BS = ( EXPRESSION ); \ CERR( "二分探索結果:" , #EXPRESSION , "=" , EXPRESSION_BS , ( EXPRESSION_BS > CO_TARGET_BS ? ">" : EXPRESSION_BS < CO_TARGET_BS ? "<" : "=" ) , CO_TARGET_BS ); \ if( EXPRESSION_BS DESIRED_INEQUALITY CO_TARGET_BS ){ \ CERR( "二分探索成功:" , #ANSWER , ":=" , ANSWER ); \ } else { \ CERR( "二分探索失敗:" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \ CERR( "単調でないか、単調増加性と単調減少性を逆にしてしまったか、探索範囲内に解が存在しません。" ); \ ANSWER = MAXIMUM + 1; \ } \ } \ } \ // 単調増加の時にEXPRESSION >= CO_TARGETの最小解を格納。 #define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , >= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) // 単調増加の時にEXPRESSION <= CO_TARGETの最大解を格納。 #define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , > , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) // 単調減少の時にEXPRESSION >= CO_TARGETの最大解を格納。 #define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , < , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) // 単調減少の時にEXPRESSION <= CO_TARGETの最小解を格納。 #define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , <= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) // t以下の値が存在すればその最大値のiterator、存在しなければend()を返す。 TE IN TY set::iterator MaximumLeq( set& S , CO T& t ) { CO auto EN = S.EN(); if( S.empty() ){ RE EN; } auto itr = S.upper_bound( t ); RE itr == EN ? S.find( *( S.rBE() ) ) : itr == S.BE() ? EN : --itr; } // t未満の値が存在すればその最大値のiterator、存在しなければend()を返す。 TE IN TY set::iterator MaximumLt( set& S , CO T& t ) { CO auto EN = S.EN(); if( S.empty() ){ RE EN; } auto itr = S.lower_bound( t ); RE itr == EN ? S.find( *( S.rBE() ) ) : itr == S.BE() ? EN : --itr; } // t以上の値が存在すればその最小値のiterator、存在しなければend()を返す。 TE IN TY set::iterator MinimumGeq( set& S , CO T& t ) { RE S.lower_bound( t ); } // tより大きい値が存在すればその最小値のiterator、存在しなければend()を返す。 TE IN TY set::iterator MinimumGt( set& S , CO T& t ) { RE S.upper_bound( t ); } // 尺取り法用 // VAR_TPAがINITからUPDATEを繰り返しCONTINUE_CONDITIONを満たす限り、ON_CONDITIONを判定して // trueならON、falseならOFFとなる。直近のONの区間を[VAR_TPA_L,VAR_TPA_R)で管理する。 #define TPA( VAR_TPA , INIT , UPDATE , CONTINUE_CONDITION , ON_CONDITION , ONON , ONOFF , OFFON , OFFOFF , FINISH ) \ { \ auto VAR_TPA = INIT; \ auto VAR_TPA ## _L = VAR_TPA; \ auto VAR_TPA ## _R = VAR_TPA; \ bool on_TPA = false; \ int state_TPA = 3; \ WH( CONTINUE_CONDITION ){ \ bool on_TPA_next = ON_CONDITION; \ state_TPA = ( ( on_TPA ? 1 : 0 ) << 1 ) | ( on_TPA_next ? 1 : 0 ); \ CERR( "尺取り中: [L,R) = [" , VAR_TPA ## _L , "," , VAR_TPA ## _R , ") ," , #VAR_TPA , "=" , VAR_TPA , "," , ( ( state_TPA >> 1 ) & 1 ) == 1 ? "on" : "off" , " ->" , ( state_TPA & 1 ) == 1 ? "on" : "off" ); \ if( state_TPA == 0 ){ \ OFFOFF; VAR_TPA ## _L = VAR_TPA ## _R = VAR_TPA; UPDATE; \ } else if( state_TPA == 1 ){ \ OFFON; VAR_TPA ## _L = VAR_TPA; UPDATE; VAR_TPA ## _R = VAR_TPA; \ } else if( state_TPA == 2 ){ \ ONOFF; VAR_TPA ## _L = VAR_TPA ## _R = VAR_TPA; UPDATE; \ } else { \ ONON; UPDATE; VAR_TPA ## _R = VAR_TPA; \ } \ on_TPA = on_TPA_next; \ } \ CERR( "尺取り終了: [L,R) = [" , VAR_TPA ## _L , "," , VAR_TPA ## _R , ") ," , #VAR_TPA , "=" , VAR_TPA ); \ FINISH; \ } \ // データ構造用 TE TY V> IN V OP+( CO V& a0 , CO V& a1 ) { if( a0.empty() ){ RE a1; } if( a1.empty() ){ RE a0; } AS( a0.SZ() == a1.SZ() ); V answer{}; for( auto itr0 = a0.BE() , itr1 = a1.BE() , EN0 = a0.EN(); itr0 != EN0 ; itr0++ , itr1++ ){ answer.push_back( *itr0 + *itr1 ); } RE answer; } TE IN pair OP+( CO pair& t0 , CO pair& t1 ) { RE { t0.first + t1.first , t0.second + t1.second }; } TE IN tuple OP+( CO tuple& t0 , CO tuple& t1 ) { RE { get<0>( t0 ) + get<0>( t1 ) , get<1>( t0 ) + get<1>( t1 ) , get<2>( t0 ) + get<2>( t1 ) }; } TE IN tuple OP+( CO tuple& t0 , CO tuple& t1 ) { RE { get<0>( t0 ) + get<0>( t1 ) , get<1>( t0 ) + get<1>( t1 ) , get<2>( t0 ) + get<2>( t1 ) , get<3>( t0 ) + get<3>( t1 ) }; } TE IN T Add( CO T& t0 , CO T& t1 ) { RE t0 + t1; } TE IN T XorAdd( CO T& t0 , CO T& t1 ){ RE t0 ^ t1; } TE IN T Multiply( CO T& t0 , CO T& t1 ) { RE t0 * t1; } TE IN CO T& Zero() { ST CO T z{}; RE z; } TE IN CO T& One() { ST CO T o = 1; RE o; }\ TE IN T AddInv( CO T& t ) { RE -t; } TE IN T Id( CO T& v ) { RE v; } TE IN T Min( CO T& a , CO T& b ){ RE a < b ? a : b; } TE IN T Max( CO T& a , CO T& b ){ RE a < b ? b : a; } TE TY V> IN auto Get( CO V& a ) { return [&]( CRI i = 0 ){ RE a[i]; }; } // グリッド問題用 int H , W , H_minus , W_minus , HW; VE> non_wall; IN T2 EnumHW( CRI v ) { RE { v / W , v % W }; } IN int EnumHW_inv( CO T2& ij ) { auto& [i,j] = ij; RE i * W + j; } CO string direction[4] = {"U","R","D","L"}; // (i,j)->(k,h)の方向番号を取得 IN int DirectionNumberOnGrid( CRI i , CRI j , CRI k , CRI h ){RE ik?0:jh?3:(AS(false),-1);} // v->wの方向番号を取得 IN int DirectionNumberOnGrid( CRI v , CRI w ){auto [i,j]=EnumHW(v);auto [k,h]=EnumHW(w);RE DirectionNumberOnGrid(i,j,k,h);} // 方向番号の反転U<->D、R<->L IN int ReverseDirectionNumberOnGrid( CRI n ){AS(0<=n&&n<4);RE(n+2)%4;} IN VO SetEdgeOnGrid( CO string& Si , CRI i , VE>& e , CO char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){int v = EnumHW_inv({i,j});if(i>0){e[EnumHW_inv({i-1,j})].push_back(v);}if(i+10){e[EnumHW_inv({i,j-1})].push_back(v);}if(j+1>& e , CO char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){CO int v=EnumHW_inv({i,j});if(i>0){e[EnumHW_inv({i-1,j})].push_back({v,1});}if(i+10){e[EnumHW_inv({i,j-1})].push_back({v,1});}if(j+1>& non_wall , CO char& walkable = '.' , CO char& unwalkable = '#' ){non_wall.push_back(VE(W));auto& non_wall_i=non_wall[i];FOR(j,0,W){non_wall_i[j]=Si[j]==walkable?true:(assert(Si[j]==unwalkable),false);}} // デバッグ用 #ifdef DEBUG IN VO AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); } VO AutoCheck( int& exec_mode , CO bool& use_getline ); IN VO Solve(); IN VO Experiment(); IN VO SmallTest(); IN VO RandomTest(); ll GetRand( CRL Rand_min , CRL Rand_max ); IN VO BreakPoint( CRI LINE ) {} int exec_mode; CEXPR( int , solve_mode , 0 ); CEXPR( int , sample_debug_mode , 1 ); CEXPR( int , submission_debug_mode , 2 ); CEXPR( int , library_search_mode , 3 ); CEXPR( int , experiment_mode , 4 ); CEXPR( int , small_test_mode , 5 ); CEXPR( int , random_test_mode , 6 ); #ifdef USE_GETLINE CEXPR( bool , use_getline , true ); #else CEXPR( bool , use_getline , false ); #endif #else ll GetRand( CRL Rand_min , CRL Rand_max ) { ll answer = time( NULL ); RE answer * rand() % ( Rand_max + 1 - Rand_min ) + Rand_min; } #endif // VVV 常設ライブラリは以下に挿入する。 // Map (1KB) // c:/Users/user/Documents/Programming/Mathematics/Function/Map/compress.txt CL is_ordered{PU:is_ordered()= delete;TE ST CE auto Check(CO T& t)-> decltype(t < t,true_type());ST CE false_type Check(...);TE ST CE CO bool value = is_same_v< decltype(Check(declval())),true_type >;}; TE US Map = conditional_t>,unordered_map,conditional_t,map,VO>>; // Algebra (4KB) // c:/Users/user/Documents/Programming/Mathematics/Algebra/compress.txt #define DC_OF_CPOINT(POINT)IN CO U& POINT()CO NE #define DC_OF_POINT(POINT)IN U& POINT()NE #define DF_OF_CPOINT(POINT)TE IN CO U& VirtualPointedSet::POINT()CO NE{RE Point();} #define DF_OF_POINT(POINT)TE IN U& VirtualPointedSet::POINT()NE{RE Point();} TE CL UnderlyingSet{PU:US type = U;};TE CL VirtualPointedSet:VI PU UnderlyingSet{PU:VI CO U& Point()CO NE = 0;VI U& Point()NE = 0;DC_OF_CPOINT(Unit);DC_OF_CPOINT(Zero);DC_OF_CPOINT(One);DC_OF_CPOINT(Infty);DC_OF_POINT(init);DC_OF_POINT(root);};TE CL PointedSet:VI PU VirtualPointedSet{PU:U m_b_U;IN PointedSet(CO U& b_u = U());IN CO U& Point()CO NE;IN U& Point()NE;};TE CL VirtualNSet:VI PU UnderlyingSet{PU:VI U Transfer(CO U& u)= 0;IN U Inverse(CO U& u);};TE CL AbstractNSet:VI PU VirtualNSet{PU:F_U m_f_U;IN AbstractNSet(F_U f_U);IN U Transfer(CO U& u);};TE CL VirtualMagma:VI PU UnderlyingSet{PU:VI U Product(CO U& u0,CO U& u1)= 0;IN U Sum(CO U& u0,CO U& u1);};TE CL AdditiveMagma:VI PU VirtualMagma{PU:IN U Product(CO U& u0,CO U& u1);};TE CL MultiplicativeMagma:VI PU VirtualMagma{PU:IN U Product(CO U& u0,CO U& u1);};TE CL AbstractMagma:VI PU VirtualMagma{PU:M_U m_m_U;IN AbstractMagma(M_U m_U);IN U Product(CO U& u0,CO U& u1);}; TE IN PointedSet::PointedSet(CO U& b_U):m_b_U(b_U){}TE IN CO U& PointedSet::Point()CO NE{RE m_b_U;}TE IN U& PointedSet::Point()NE{RE m_b_U;}DF_OF_CPOINT(Unit);DF_OF_CPOINT(Zero);DF_OF_CPOINT(One);DF_OF_CPOINT(Infty);DF_OF_POINT(init);DF_OF_POINT(root);TE IN AbstractNSet::AbstractNSet(F_U f_U):m_f_U(MO(f_U)){ST_AS(is_invocable_r_v);}TE IN U AbstractNSet::Transfer(CO U& u){RE m_f_U(u);}TE IN U VirtualNSet::Inverse(CO U& u){RE Transfer(u);}TE IN AbstractMagma::AbstractMagma(M_U m_U):m_m_U(MO(m_U)){ST_AS(is_invocable_r_v);}TE IN U AdditiveMagma::Product(CO U& u0,CO U& u1){RE u0 + u1;}TE IN U MultiplicativeMagma::Product(CO U& u0,CO U& u1){RE u0 * u1;}TE IN U AbstractMagma::Product(CO U& u0,CO U& u1){RE m_m_U(u0,u1);}TE IN U VirtualMagma::Sum(CO U& u0,CO U& u1){RE Product(u0,u1);} TE CL VirtualMonoid:VI PU VirtualMagma,VI PU VirtualPointedSet{};TE CL AdditiveMonoid:VI PU VirtualMonoid,PU AdditiveMagma,PU PointedSet{};TE CL MultiplicativeMonoid:VI PU VirtualMonoid,PU MultiplicativeMagma,PU PointedSet{PU:IN MultiplicativeMonoid(CO U& e_U);};TE CL AbstractMonoid:VI PU VirtualMonoid,PU AbstractMagma,PU PointedSet{PU:IN AbstractMonoid(M_U m_U,CO U& e_U);}; TE IN MultiplicativeMonoid::MultiplicativeMonoid(CO U& e_U):PointedSet(e_U){}TE IN AbstractMonoid::AbstractMonoid(M_U m_U,CO U& e_U):AbstractMagma(MO(m_U)),PointedSet(e_U){} TE CL VirtualGroup:VI PU VirtualMonoid,VI PU VirtualPointedSet,VI PU VirtualNSet{};TE CL AdditiveGroup:VI PU VirtualGroup,PU AdditiveMonoid{PU:IN U Transfer(CO U& u);};TE CL AbstractGroup:VI PU VirtualGroup,PU AbstractMonoid,PU AbstractNSet{PU:IN AbstractGroup(M_U m_U,CO U& e_U,I_U i_U);}; TE IN AbstractGroup::AbstractGroup(M_U m_U,CO U& e_U,I_U i_U):AbstractMonoid(MO(m_U),e_U),AbstractNSet(MO(i_U)){}TE IN U AdditiveGroup::Transfer(CO U& u){RE -u;} // AAA 常設ライブラリは以上に挿入する。 #define INCLUDE_LIBRARY #include __FILE__ #endif // INCLUDE_LIBRARY #endif // INCLUDE_SUB #endif // INCLUDE_MAIN