# library from https://prd-xxx.hateblo.jp/entry/2020/02/07/114818 class Deque: def __init__(self, src_arr=[], max_size=300000): self.N = max(max_size, len(src_arr)) + 1 self.buf = list(src_arr) + [None] * (self.N - len(src_arr)) self.head = 0 self.tail = len(src_arr) def __index(self, i): l = len(self) if not -l <= i < l: raise IndexError('index out of range: ' + str(i)) if i < 0: i += l return (self.head + i) % self.N def __extend(self): ex = self.N - 1 self.buf[self.tail+1 : self.tail+1] = [None] * ex self.N = len(self.buf) if self.head > 0: self.head += ex def is_full(self): return len(self) >= self.N - 1 def is_empty(self): return len(self) == 0 def append(self, x): if self.is_full(): self.__extend() self.buf[self.tail] = x self.tail += 1 self.tail %= self.N def appendleft(self, x): if self.is_full(): self.__extend() self.buf[(self.head - 1) % self.N] = x self.head -= 1 self.head %= self.N def pop(self): if self.is_empty(): raise IndexError('pop() when buffer is empty') ret = self.buf[(self.tail - 1) % self.N] self.tail -= 1 self.tail %= self.N return ret def popleft(self): if self.is_empty(): raise IndexError('popleft() when buffer is empty') ret = self.buf[self.head] self.head += 1 self.head %= self.N return ret def __len__(self): return (self.tail - self.head) % self.N def __getitem__(self, key): return self.buf[self.__index(key)] def __setitem__(self, key, value): self.buf[self.__index(key)] = value def __str__(self): return 'Deque({0})'.format(str(list(self))) # https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py import math from bisect import bisect_left, bisect_right from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional T = TypeVar('T') class SortedSet(Generic[T]): BUCKET_RATIO = 50 REBUILD_RATIO = 170 def _build(self, a: Optional[List[T]] = None) -> None: "Evenly divide `a` into buckets." if a is None: a = list(self) size = len(a) bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO))) self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)] def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)" a = list(a) self.size = len(a) if not all(a[i] < a[i + 1] for i in range(len(a) - 1)): a = sorted(set(a)) self._build(a) def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __eq__(self, other) -> bool: return list(self) == list(other) def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedSet" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _position(self, x: T) -> Tuple[List[T], int]: "Find the bucket and position which x should be inserted. self must not be empty." for a in self.a: if x <= a[-1]: break return (a, bisect_left(a, x)) def __contains__(self, x: T) -> bool: if self.size == 0: return False a, i = self._position(x) return i != len(a) and a[i] == x def add(self, x: T) -> bool: "Add an element and return True if added. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return True a, i = self._position(x) if i != len(a) and a[i] == x: return False a.insert(i, x) self.size += 1 if len(a) > len(self.a) * self.REBUILD_RATIO: self._build() return True def _pop(self, a: List[T], i: int) -> T: ans = a.pop(i) self.size -= 1 if not a: self._build() return ans def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a, i = self._position(x) if i == len(a) or a[i] != x: return False self._pop(a, i) return True def lt(self, x: T) -> Optional[T]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Optional[T]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Optional[T]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Optional[T]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, i: int) -> T: "Return the i-th element." if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return a[i] else: for a in self.a: if i < len(a): return a[i] i -= len(a) raise IndexError def pop(self, i: int = -1) -> T: "Pop and return the i-th element." if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return self._pop(a, i) else: for a in self.a: if i < len(a): return self._pop(a, i) i -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans def solve(): n = int(input()) plist = list(map(int, input().split())) deq = Deque() deq.append(plist[0]) ss = SortedSet() ss.add(plist[0]) tento = 0 f = plist[0] for i in range(1, n): p = plist[i] low = ss.index(p) up = i - low if low > up: tento += up deq.append(p) elif low == up: if f < p: tento += up deq.append(p) else: tento += low f = p deq.appendleft(p) else: tento += low f = p deq.appendleft(p) ss.add(p) print(tento) print(*deq) q = int(input()) while q: q -= 1 solve()