#line 1 "test/yuki/yuki_901.test.cpp" #define PROBLEM "https://yukicoder.me/problems/no/901" #line 2 "graph/base.hpp" #include #include #include #include #line 2 "data_structure/simple_csr.hpp" #line 4 "data_structure/simple_csr.hpp" #include #line 6 "data_structure/simple_csr.hpp" namespace ebi { template struct simple_csr { simple_csr() = default; simple_csr(int n, const std::vector>& elements) : start(n + 1, 0), elist(elements.size()) { for (auto e : elements) { start[e.first + 1]++; } for (auto i : std::views::iota(0, n)) { start[i + 1] += start[i]; } auto counter = start; for (auto [i, e] : elements) { elist[counter[i]++] = e; } } simple_csr(const std::vector>& es) : start(es.size() + 1, 0) { int n = es.size(); for (auto i : std::views::iota(0, n)) { start[i + 1] = (int)es[i].size() + start[i]; } elist.resize(start.back()); for (auto i : std::views::iota(0, n)) { std::copy(es[i].begin(), es[i].end(), elist.begin() + start[i]); } } int size() const { return (int)start.size() - 1; } const auto operator[](int i) const { return std::ranges::subrange(elist.begin() + start[i], elist.begin() + start[i + 1]); } auto operator[](int i) { return std::ranges::subrange(elist.begin() + start[i], elist.begin() + start[i + 1]); } const auto operator()(int i, int l, int r) const { return std::ranges::subrange(elist.begin() + start[i] + l, elist.begin() + start[i + 1] + r); } auto operator()(int i, int l, int r) { return std::ranges::subrange(elist.begin() + start[i] + l, elist.begin() + start[i + 1] + r); } private: std::vector start; std::vector elist; }; } // namespace ebi #line 9 "graph/base.hpp" namespace ebi { template struct Edge { int to; T cost; int id; }; template struct Graph { private: using cost_type = E; using edge_type = Edge; public: Graph(int n_) : n(n_) {} Graph() = default; void add_edge(int u, int v, cost_type c) { edges.emplace_back(u, edge_type{v, c, m++}); } void read_tree(int offset = 1, bool is_weighted = false) { read_graph(n - 1, offset, false, is_weighted); } void read_parents(int offset = 1) { for (auto i : std::views::iota(1, n)) { int p; std::cin >> p; p -= offset; add_edge(p, i, 1); add_edge(i, p, 1); } build(); } void read_graph(int e, int offset = 1, bool is_directed = false, bool is_weighted = false) { for (int i = 0; i < e; i++) { int u, v; std::cin >> u >> v; u -= offset; v -= offset; if (is_weighted) { cost_type c; std::cin >> c; add_edge(u, v, c); if (!is_directed) { add_edge(v, u, c); } } else { add_edge(u, v, 1); if (!is_directed) { add_edge(v, u, 1); } } } build(); } void build() { assert(!prepared); csr = simple_csr(n, edges); edges.clear(); prepared = true; } int size() const { return n; } const auto operator[](int i) const { return csr[i]; } auto operator[](int i) { return csr[i]; } private: int n, m = 0; std::vector> edges; simple_csr csr; bool prepared = false; }; } // namespace ebi #line 1 "template/template.hpp" #include #define rep(i, a, n) for (int i = (int)(a); i < (int)(n); i++) #define rrep(i, a, n) for (int i = ((int)(n)-1); i >= (int)(a); i--) #define Rep(i, a, n) for (i64 i = (i64)(a); i < (i64)(n); i++) #define RRep(i, a, n) for (i64 i = ((i64)(n)-i64(1)); i >= (i64)(a); i--) #define all(v) (v).begin(), (v).end() #define rall(v) (v).rbegin(), (v).rend() #line 2 "template/debug_template.hpp" #line 4 "template/debug_template.hpp" namespace ebi { #ifdef LOCAL #define debug(...) \ std::cerr << "LINE: " << __LINE__ << " [" << #__VA_ARGS__ << "]:", \ debug_out(__VA_ARGS__) #else #define debug(...) #endif void debug_out() { std::cerr << std::endl; } template void debug_out(Head h, Tail... t) { std::cerr << " " << h; if (sizeof...(t) > 0) std::cerr << " :"; debug_out(t...); } } // namespace ebi #line 2 "template/int_alias.hpp" #line 4 "template/int_alias.hpp" namespace ebi { using ld = long double; using std::size_t; using i8 = std::int8_t; using u8 = std::uint8_t; using i16 = std::int16_t; using u16 = std::uint16_t; using i32 = std::int32_t; using u32 = std::uint32_t; using i64 = std::int64_t; using u64 = std::uint64_t; using i128 = __int128_t; using u128 = __uint128_t; } // namespace ebi #line 2 "template/io.hpp" #line 5 "template/io.hpp" #include #line 7 "template/io.hpp" namespace ebi { template std::ostream &operator<<(std::ostream &os, const std::pair &pa) { return os << pa.first << " " << pa.second; } template std::istream &operator>>(std::istream &os, std::pair &pa) { return os >> pa.first >> pa.second; } template std::ostream &operator<<(std::ostream &os, const std::vector &vec) { for (std::size_t i = 0; i < vec.size(); i++) os << vec[i] << (i + 1 == vec.size() ? "" : " "); return os; } template std::istream &operator>>(std::istream &os, std::vector &vec) { for (T &e : vec) std::cin >> e; return os; } template std::ostream &operator<<(std::ostream &os, const std::optional &opt) { if (opt) { os << opt.value(); } else { os << "invalid value"; } return os; } void fast_io() { std::cout << std::fixed << std::setprecision(15); std::cin.tie(nullptr); std::ios::sync_with_stdio(false); } } // namespace ebi #line 2 "template/utility.hpp" #line 5 "template/utility.hpp" #line 8 "template/utility.hpp" namespace ebi { template inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } template T safe_ceil(T a, T b) { if (a % b == 0) return a / b; else if (a >= 0) return (a / b) + 1; else return -((-a) / b); } template T safe_floor(T a, T b) { if (a % b == 0) return a / b; else if (a >= 0) return a / b; else return -((-a) / b) - 1; } constexpr i64 LNF = std::numeric_limits::max() / 4; constexpr int INF = std::numeric_limits::max() / 2; const std::vector dy = {1, 0, -1, 0, 1, 1, -1, -1}; const std::vector dx = {0, 1, 0, -1, 1, -1, 1, -1}; } // namespace ebi #line 2 "tree/heavy_light_decomposition.hpp" #line 6 "tree/heavy_light_decomposition.hpp" #line 8 "tree/heavy_light_decomposition.hpp" namespace ebi { template struct heavy_light_decomposition { private: void dfs_sz(int v) { for (auto &e : g[v]) { if (e.to == par[v]) continue; par[e.to] = v; depth_[e.to] = depth_[v] + 1; dist[e.to] = dist[v] + e.cost; dfs_sz(e.to); sz[v] += sz[e.to]; if (sz[e.to] > sz[g[v][0].to] || g[v][0].to == par[v]) std::swap(e, g[v][0]); } } void dfs_hld(int v) { in[v] = num++; rev[in[v]] = v; for (auto e : g[v]) { if (e.to == par[v]) continue; nxt[e.to] = (e.to == g[v][0].to ? nxt[v] : e.to); dfs_hld(e.to); } out[v] = num; } // [u, v) パスの取得 (v は u の祖先) std::vector> ascend(int u, int v) const { std::vector> res; while (nxt[u] != nxt[v]) { res.emplace_back(in[u], in[nxt[u]]); u = par[nxt[u]]; } if (u != v) res.emplace_back(in[u], in[v] + 1); return res; } // (u, v] パスの取得 (u は v の祖先) std::vector> descend(int u, int v) const { if (u == v) return {}; if (nxt[u] == nxt[v]) return {{in[u] + 1, in[v]}}; auto res = descend(u, par[nxt[v]]); res.emplace_back(in[nxt[v]], in[v]); return res; } public: heavy_light_decomposition(const Graph &gh, int root = 0) : n(gh.size()), g(gh), sz(n, 1), in(n), out(n), nxt(n), par(n, -1), depth_(n, 0), rev(n), dist(n, 0) { nxt[root] = root; dfs_sz(root); dfs_hld(root); } int idx(int u) const { return in[u]; } int rev_idx(int i) const { return rev[i]; } int la(int v, int k) const { while (1) { int u = nxt[v]; if (in[u] <= in[v] - k) return rev[in[v] - k]; k -= in[v] - in[u] + 1; v = par[u]; } } int lca(int u, int v) const { while (nxt[u] != nxt[v]) { if (in[u] < in[v]) std::swap(u, v); u = par[nxt[u]]; } return depth_[u] < depth_[v] ? u : v; } int jump(int s, int t, int i) const { if (i == 0) return s; int l = lca(s, t); int d = depth_[s] + depth_[t] - depth_[l] * 2; if (d < i) return -1; if (depth_[s] - depth_[l] >= i) return la(s, i); i = d - i; return la(t, i); } std::vector path(int s, int t) const { int l = lca(s, t); std::vector a, b; for (; s != l; s = par[s]) a.emplace_back(s); for (; t != l; t = par[t]) b.emplace_back(t); a.emplace_back(l); std::reverse(b.begin(), b.end()); a.insert(a.end(), b.begin(), b.end()); return a; } int parent(int u) const { return par[u]; } T distance(int u, int v) const { return dist[u] + dist[v] - 2 * dist[lca(u, v)]; } T distance_from_root(int v) const { return dist[v]; } T depth(int v) const { return depth_[v]; } bool at_path(int u, int v, int s) const { return distance(u, v) == distance(u, s) + distance(s, v); } template void path_noncommutative_query(int u, int v, bool vertex, const F &f) const { int l = lca(u, v); for (auto [a, b] : ascend(u, l)) f(a + 1, b); if (vertex) f(in[l], in[l] + 1); for (auto [a, b] : descend(l, v)) f(a, b + 1); } std::vector> path_sections(int u, int v, bool vertex) const { int l = lca(u, v); std::vector> sections; for (auto [a, b] : ascend(u, l)) sections.emplace_back(a + 1, b); if (vertex) sections.emplace_back(in[l], in[l] + 1); for (auto [a, b] : descend(l, v)) sections.emplace_back(a, b + 1); return sections; } template int max_path(int u, int v, bool vertex, F binary_search) const { int prev = -1; int l = lca(u, v); for (auto [a, b] : ascend(u, l)) { a++; int m = binary_search(a, b); if (m == b) { prev = rev[b]; } else { return (m == a ? prev : rev[m]); } } if (vertex) { int m = binary_search(in[l], in[l] + 1); if (m == in[l]) { return prev; } else { prev = l; } } for (auto [a, b] : descend(l, v)) { b++; int m = binary_search(a, b); if (m == b) { prev = rev[b - 1]; } else { return m == a ? prev : rev[m - 1]; } } return v; } template void subtree_query(int u, bool vertex, const F &f) { f(in[u] + int(!vertex), out[u]); } const std::vector &dfs_order() const { return rev; } std::vector> lca_based_auxiliary_tree_dfs_order( std::vector vs) const; std::pair, Graph> lca_based_auxiliary_tree(std::vector vs) const; private: int n; Graph g; std::vector sz, in, out, nxt, par, depth_, rev; std::vector dist; int num = 0; }; } // namespace ebi #line 2 "tree/lca_based_auxiliary_tree.hpp" #line 8 "tree/lca_based_auxiliary_tree.hpp" #line 10 "tree/lca_based_auxiliary_tree.hpp" namespace ebi { template std::vector> heavy_light_decomposition::lca_based_auxiliary_tree_dfs_order( std::vector vs) const { if (vs.empty()) return {}; std::sort(vs.begin(), vs.end(), [&](int u, int v) -> bool { return in[u] < in[v]; }); auto s = vs; for (int i = 1; i < int(vs.size()); i++) { s.emplace_back(lca(vs[i - 1], vs[i])); } std::sort(s.begin(), s.end(), [&](int u, int v) -> bool { return in[u] < in[v]; }); s.erase(std::unique(s.begin(), s.end()), s.end()); std::stack stack; stack.push(s[0]); int sz = s.size(); std::vector> dfs_order(sz); dfs_order[0] = {s[0], -1}; for (int i = 1; i < int(s.size()); i++) { int v = s[i]; while (!stack.empty()) { int u = stack.top(); if (in[u] <= in[v] && in[v] < out[u]) { break; } else { stack.pop(); } } assert(!stack.empty()); int par = stack.top(); dfs_order[i] = {v, par}; stack.push(v); } return dfs_order; } template std::pair, Graph> heavy_light_decomposition::lca_based_auxiliary_tree(std::vector vs) const { static std::vector a(1'000'000, -1), p(1'000'000, -1); int k = vs.size(); if (k == 1) { return {vs, Graph(1)}; } std::sort(vs.begin(), vs.end(), [&](int v, int u) { return in[v] < in[u]; }); std::stack stack; std::vector s; stack.push(vs[0]); for (int i : std::views::iota(1, k)) { int w = lca(vs[i - 1], vs[i]); int prev = -1; while (!stack.empty() && depth_[w] <= depth_[stack.top()]) { if (prev != -1) { s.emplace_back(prev); p[prev] = stack.top(); } prev = stack.top(); stack.pop(); } if (prev != w) { assert(prev != -1); s.emplace_back(prev); p[prev] = w; } stack.push(w); stack.push(vs[i]); } { int prev = -1; while (!stack.empty()) { int v = stack.top(); s.emplace_back(v); if (prev != -1) p[prev] = v; prev = v; stack.pop(); } } std::reverse(s.begin(), s.end()); int m = s.size(); for (int i : std::views::iota(0, m)) { a[s[i]] = i; } Graph tree(m); for (auto v : s) { if (p[v] < 0) continue; T cost = distance(p[v], v); tree.add_edge(a[p[v]], a[v], cost); tree.add_edge(a[v], a[p[v]], cost); } tree.build(); for (auto v : s) { a[v] = -1; p[v] = -1; } return {s, tree}; } } // namespace ebi #line 7 "test/yuki/yuki_901.test.cpp" namespace ebi { void main_() { int n; std::cin >> n; Graph g(n); g.read_tree(0, true); heavy_light_decomposition hld(g); int q; std::cin >> q; while (q--) { int k; std::cin >> k; std::vector vs(k); for (auto &v : vs) std::cin >> v; if(k == 1) { std::cout << "0\n"; continue; } auto [ids, tree] = hld.lca_based_auxiliary_tree(vs); std::vector par(tree.size(), -1); i64 ans = 0; auto dfs = [&](auto &&self, int v) -> void { for (auto e : tree[v]) { if (par[v] == e.to) continue; ans += e.cost; par[e.to] = v; self(self, e.to); } }; dfs(dfs, 0); std::cout << ans << '\n'; } } } // namespace ebi int main() { ebi::fast_io(); int t = 1; // std::cin >> t; while (t--) { ebi::main_(); } return 0; }