#ifndef INCLUDE_MODE #define INCLUDE_MODE // #define REACTIVE // #define USE_GETLINE #endif #ifdef INCLUDE_MAIN CEXPR( uint , Q , 1000000007 ); using MOD = Montgomery; MOD A1( ull& M , uint& K ); MOD A2( ull& M , uint& K ); MOD A3( ull& M , uint& K ); IN VO Solve() { CIN( int , N ); CIN( ull , M ); CIN( uint , K ); RETURN( N * M < K ? 0 : K == 1 ? N * M == 1 ? 1 : 0 : N == 1 ? A1( M , K ) : N == 2 ? A2( M , K ) : A3( M , K ) ); } REPEAT_MAIN(1); MOD A1( ull& M , uint& K ) { MOD answer = MOD::zero(); ( --M ) %= ( Q - 1 ); K--; MOD k_mod = MOD::zero(); FOREQ( k , 0 , K ){ const MOD d = MOD::Combination( K , k ) * ( k_mod ^ M ); ( k & 1 ) == 0 ? answer += d : answer -= d; k_mod++; } return move( ( ( K & 1 ) == 1 ? answer.SignInvert() : answer ) *= k_mod ); } MOD A2( ull& M , uint& K ) { MOD answer = MOD::zero(); ( --M ) %= ( Q - 1 ); K -= 2; MOD k_mod = MOD::zero(); FOREQ( k , 0 , K ){ MOD temp = k_mod; const MOD d = MOD::Combination( K , k ) * ( ( ++( ( ++temp ) *= k_mod ) ) ^ M ); ( k & 1 ) == 0 ? answer += d : answer -= d; k_mod++; } answer *= k_mod; return move( ( ( K & 1 ) == 1 ? answer.SignInvert() : answer ) *= ++k_mod ); } MOD A3( ull& M , uint& K ) { TwoByOneMatrix answer_vec{ 0 , 0 }; const MOD& one = MOD::one(); M--; K -= 2; MOD k_mod = MOD::zero(); FOREQ( k , 0 , K ){ MOD k_copy = k_mod; k_copy--; MOD k_copy2 = k_mod * k_mod; k_copy2++; const MOD k_copy3 = k_copy2 * k_mod; TwoByOneMatrix d{ one , k_mod }; TwoByTwoMatrix Transfer{ k_copy2 + k_mod , k_copy2 , k_copy3 , k_copy3 + k_copy }; d.Act( Transfer ^ M ) *= MOD::Combination( K , k ); ( k & 1 ) == 0 ? answer_vec += d : answer_vec -= d; k_mod++; } MOD answer = answer_vec.Get( 0 ) + answer_vec.Get( 1 ); answer *= k_mod; return move( ( ( K & 1 ) == 1 ? answer.SignInvert() : answer ) *= ++k_mod ); } #else // INCLUDE_MAIN #ifdef INCLUDE_SUB // COMPAREに使用。圧縮時は削除する。 ll Naive( int N , int M , int K ) { ll answer = N + M + K; return answer; } // COMPAREに使用。圧縮時は削除する。 ll Answer( ll N , ll M , ll K ) { // START_WATCH; ll answer = N + M + K; // // TLに準じる乱択や全探索。デフォルトの猶予は100.0[ms]。 // CEXPR( double , TL , 2000.0 ); // while( CHECK_WATCH( TL ) ){ // } return answer; } // 圧縮時は中身だけ削除する。 IN VO Experiment() { // CEXPR( int , bound , 10 ); // FOREQ( N , 0 , bound ){ // FOREQ( M , 0 , bound ){ // FOREQ( K , 0 , bound ){ // COUT( N , M , K , ":" , Naive( N , M , K ) ); // } // } // // cout << Naive( N ) << ",\n"[N==bound]; // } } // 圧縮時は中身だけ削除する。 IN VO SmallTest() { // CEXPR( int , bound , 10 ); // FOREQ( N , 0 , bound ){ // FOREQ( M , 0 , bound ){ // FOREQ( K , 0 , bound ){ // COMPARE( N , M , K ); // } // } // // COMPARE( N ); // } } #define INCLUDE_MAIN #include __FILE__ #else // INCLUDE_SUB #ifdef INCLUDE_LIBRARY /* C-x 3 C-x o C-x C-fによるファイル操作用 BFS (5KB) c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/compress.txt CoordinateCompress (3KB) c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/CoordinateCompress/compress.txt DFSOnTree (11KB) c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepthFirstSearch/Tree/a.hpp Divisor (4KB) c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txt IntervalAddBIT (9KB) c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/IntervalAdd/compress.txt Polynomial (21KB) c:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txt UnionFind (3KB) c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/UnionFindForest/compress.txt */ // VVV 常設でないライブラリは以下に挿入する。 #define TTMA TwoByTwoMatrix #define SFINAE_FOR_MA(DEFAULT)TY Arg,enable_if_t>* DEFAULT TE CL TTMA{PU:T m_M00;T m_M01;T m_M10;T m_M11;CE TTMA(T M00,T M01,T M10,T M11)NE;CE TTMA(CO T& scalar = T())NE;TE CE TTMA(CO Arg& scalar)NE;CE TTMA(CO TTMA& mat)NE;CE TTMA(TTMA&& mat)NE;CE TTMA& OP=(TTMA mat)NE;CE TTMA& OP+=(CO TTMA& mat)NE;CE TTMA& OP-=(CO TTMA& mat)NE;CE TTMA& OP*=(CO TTMA& mat)NE;CE TTMA& OP*=(CO T& scalar)NE;TE CE TTMA& OP*=(CO Arg& scalar)NE;IN TTMA& OP/=(CO TTMA& mat);IN TTMA& OP/=(CO T& scalar);TE IN TTMA& OP/=(CO Arg& scalar);IN TTMA& OP%=(CO T& scalar);IN TTMA& Invert();IN TTMA Inverse()CO;CE bool OP==(CO TTMA& mat)CO NE;CE bool OP!=(CO TTMA& mat)CO NE;CE TTMA OP+(TTMA mat)CO NE;CE TTMA OP-()CO NE;CE TTMA OP-(CO TTMA& mat)CO NE;CE TTMA OP*(CO TTMA& mat)CO NE;TE CE TTMA OP*(CO Arg& scalar)CO NE;IN TTMA OP/(CO TTMA& mat)CO;TE IN TTMA OP/(CO Arg& scalar)CO;IN TTMA OP%(CO T& scalar)CO;TE CE TTMA OP^(INT EX)CO;CE T tr()CO NE;CE T det()CO NE;CE VO swap(TTMA& mat)NE;CE CO T& Get(CRUI y,CRUI x)CO NE;CE T& Ref(CRUI y,CRUI x)NE;CE TTMA Square()CO NE;}; TE CE TTMA OP*(CO Arg& scalar,CO TTMA& mat)NE;TE CE TTMA PW(CO TTMA& mat,INT EX)NE;TE CE VO swap(TTMA& mat1,TTMA& mat2)NE;TE CE TTMA::TTMA(T M00,T M01,T M10,T M11)NE:m_M00(MO(M00)),m_M01(MO(M01)),m_M10(MO(M10)),m_M11(MO(M11)){}TE CE TTMA::TTMA(CO T& scalar)NE:m_M00(scalar),m_M01(),m_M10(),m_M11(scalar){}TE TE CE TTMA::TTMA(CO Arg& scalar)NE:TTMA(T(scalar)){}TE CE TTMA::TTMA(CO TTMA& mat)NE:m_M00(mat.m_M00),m_M01(mat.m_M01),m_M10(mat.m_M10),m_M11(mat.m_M11){}TE CE TTMA::TTMA(TTMA&& mat)NE:m_M00(MO(mat.m_M00)),m_M01(MO(mat.m_M01)),m_M10(MO(mat.m_M10)),m_M11(MO(mat.m_M11)){}TE CE TTMA& TTMA::OP=(TTMA mat)NE{m_M00 = MO(mat.m_M00);m_M01 = MO(mat.m_M01);m_M10 = MO(mat.m_M10);m_M11 = MO(mat.m_M11);RE *TH;}TE CE TTMA& TTMA::OP+=(CO TTMA& mat)NE{m_M00 += mat.m_M00;m_M01 += mat.m_M01;m_M10 += mat.m_M10;m_M11 += mat.m_M11;RE *TH;}TE CE TTMA& TTMA::OP-=(CO TTMA& mat)NE{m_M00 -= mat.m_M00;m_M01 -= mat.m_M01;m_M10 -= mat.m_M10;m_M11 -= mat.m_M11;RE *TH;}TE CE TTMA& TTMA::OP*=(CO TTMA& mat)NE{RE *TH = *TH * mat;}TE CE TTMA& TTMA::OP*=(CO T& scalar)NE{m_M00 *= scalar;m_M01 *= scalar;m_M10 *= scalar;m_M11 *= scalar;RE *TH;}TE TE CE TTMA& TTMA::OP*=(CO Arg& scalar)NE{RE *TH *= T(scalar);}TE IN TTMA& TTMA::OP/=(CO TTMA& mat){RE *TH = *TH / mat;}TE IN TTMA& TTMA::OP/=(CO T& scalar){RE *TH *= T(1)/ scalar;}TE TE IN TTMA& TTMA::OP/=(CO Arg& scalar){RE *TH /= T(scalar);}TE IN TTMA& TTMA::OP%=(CO T& scalar){m_M00 %= scalar;m_M01 %= scalar;m_M10 %= scalar;m_M11 %= scalar;RE *TH;}TE IN TTMA& TTMA::Invert(){::swap(m_M00,m_M11);m_M01 = -m_M01;m_M10 = -m_M10;RE *TH /= det();}TE TTMA TTMA::Inverse()CO{RE MO(TTMA(*TH).invert());}TE CE bool TTMA::OP==(CO TTMA& mat)CO NE{RE m_M00 == mat.m_M00 && m_M01 == mat.m_M01 && m_M10 == mat.m_M10 && m_M11 == mat.m_M11;}TE CE bool TTMA::OP!=(CO TTMA& mat)CO NE{RE !(*TH == mat);}TE CE TTMA TTMA::OP+(TTMA mat)CO NE{RE MO(mat += *TH);}TE CE TTMA TTMA::OP-()CO NE{RE TTMA(-m_M00,-m_M01,-m_M10,-m_M11);}TE CE TTMA TTMA::OP-(CO TTMA& mat)CO NE{RE MO(-mat += *TH);}TE CE TTMA TTMA::OP*(CO TTMA& mat)CO NE{RE TTMA(m_M00 * mat.m_M00 + m_M01 * mat.m_M10,m_M00 * mat.m_M01 + m_M01 * mat.m_M11,m_M10 * mat.m_M00 + m_M11 * mat.m_M10,m_M10 * mat.m_M01 + m_M11 * mat.m_M11);}TE TE CE TTMA TTMA::OP*(CO Arg& scalar)CO NE{RE MO(TTMA(*TH)*= scalar);}TE IN TTMA TTMA::OP/(CO TTMA& mat)CO{CO T det_inv{T(1)/(mat.m_M00 * mat.m_M11 - mat.m_M01 * mat.m_M10)};RE TTMA((m_M00 * mat.m_M11 - m_M01 * mat.m_M10)* det_inv,(m_M01 * mat.m_M00 - m_M00 * mat.m_M01)* det_inv,(m_M10 * mat.m_M11 - m_M11 * mat.m_M10)* det_inv,(m_M11 * mat.m_M00 - m_M10 * mat.m_M01)* det_inv);}TE TE IN TTMA TTMA::OP/(CO Arg& scalar)CO{RE MO(TTMA(*TH)/= scalar);}TE IN TTMA TTMA::OP%(CO T& scalar)CO{RE MO(TTMA(*TH)%= scalar);}TE TE CE TTMA TTMA::OP^(INT EX)CO{TTMA AN{1},PW{*TH};EX < 0?(EX *= -1,PW.Invert()):*TH;WH(EX > 0){(EX & 1)== 1?AN *= PW:AN;PW = PW.Square();EX >>= 1;}RE AN;}TE CE TTMA TTMA::Square()CO NE{RE TTMA(m_M00 * m_M00 + m_M01 * m_M10,(m_M00 + m_M11)* m_M01,m_M10 *(m_M00 + m_M11),m_M10 * m_M01 + m_M11 * m_M11);}TE CE T TTMA::tr()CO NE{RE m_M00 + m_M11;}TE CE T TTMA::det()CO NE{RE m_M00 * m_M11 - m_M01 * m_M10;}TE CE VO TTMA::swap(TTMA& mat)NE{::swap(m_M00,mat.m_M00);::swap(m_M01,mat.m_M01);::swap(m_M10,mat.m_M10);::swap(m_M11,mat.m_M11);}TE CE CO T& TTMA::Get(CRUI y,CRUI x)CO NE{RE y == 0?x == 0?m_M00:m_M01:x == 0?m_M10:m_M11;}TE CE T& TTMA::Ref(CRUI y,CRUI x)NE{RE y == 0?x == 0?m_M00:m_M01:x == 0?m_M10:m_M11;}TE CE TTMA OP*(CO Arg& scalar,CO TTMA& mat)NE{RE MO(TTMA(mat)*= scalar);}TE CE TTMA PW(CO TTMA& mat,INT EX)NE{RE mat ^ MO(EX);}TE CE VO swap(TTMA& mat1,TTMA& mat2)NE{mat1.swap(mat2);} #define TOMA TwoByOneMatrix TE CL TOMA{PU:T m_M0;T m_M1;CE TOMA(T M0 = T(),T M1 = T())NE;CE TOMA(CO TOMA& mat)NE;CE TOMA(TOMA&& mat)NE;CE TOMA& OP=(TOMA mat)NE;CE TOMA& OP+=(CO TOMA& mat)NE;CE TOMA& OP-=(CO TOMA& mat)NE;CE TOMA& OP*=(CO T& scalar)NE;IN TOMA& OP/=(CO T& scalar);IN TOMA& OP%=(CO T& scalar);CE TOMA& Act(CO TTMA& mat)NE;CE TOMA Action(CO TTMA& mat)CO NE;CE TOMA OP+(TOMA mat)CO NE;CE TOMA OP-(TOMA mat)CO NE;CE TOMA OP*(CO T& scalar)CO NE;IN TOMA OP/(CO T& scalar)CO;IN TOMA OP%(CO T& scalar)CO;CE CO T& Get(CRUI y)CO NE;CE T& Ref(CRUI y)NE;}; TE CE TOMA::TOMA(T M0,T M1)NE:m_M0(MO(M0)),m_M1(MO(M1)){}TE CE TOMA::TOMA(CO TOMA& mat)NE:m_M0(mat.m_M0),m_M1(mat.m_M1){}TE CE TOMA::TOMA(TOMA&& mat)NE:m_M0(MO(mat.m_M0)),m_M1(MO(mat.m_M1)){}TE CE TOMA& TOMA::OP=(TOMA mat)NE{m_M0 = MO(mat.m_M0);m_M1 = MO(mat.m_M1);RE *TH;}TE CE TOMA& TOMA::OP+=(CO TOMA& mat)NE{m_M0 += mat.m_M0;m_M1 += mat.m_M1;RE *TH;}TE CE TOMA& TOMA::OP-=(CO TOMA& mat)NE{m_M0 -= mat.m_M0;m_M1 -= mat.m_M1;RE *TH;}TE CE TOMA& TOMA::OP*=(CO T& scalar)NE{m_M0 *= scalar;m_M1 *= scalar;RE *TH;}TE IN TOMA& TOMA::OP/=(CO T& scalar){m_M0 /= scalar;m_M1 /= scalar;RE *TH;}TE IN TOMA& TOMA::OP%=(CO T& scalar){m_M0 %= scalar;m_M1 %= scalar;RE *TH;}TE CE TOMA& TOMA::Act(CO TTMA& mat)NE{RE *TH = Action(mat);}TE CE TOMA TOMA::Action(CO TTMA& mat)CO NE{RE TOMA(mat.m_M00 * m_M0 + mat.m_M01 * m_M1,mat.m_M10 * m_M0 + mat.m_M11 * m_M1);}TE CE TOMA TOMA::OP+(TOMA mat)CO NE{RE MO(mat += *TH);}TE CE TOMA TOMA::OP-(TOMA mat)CO NE{RE MO(mat -= *TH);}TE CE TOMA TOMA::OP*(CO T& scalar)CO NE{RE MO(TOMA(*TH)*= scalar);}TE IN TOMA TOMA::OP/(CO T& scalar)CO{RE MO(TOMA(*TH)/ scalar);}TE IN TOMA TOMA::OP%(CO T& scalar)CO{RE MO(TOMA(*TH)% scalar);}TE CE CO T& TOMA::Get(CRUI y)CO NE{RE y == 0?m_M0:m_M1;}TE CE T& TOMA::Ref(CRUI y)NE{RE y == 0?m_M0:m_M1;}TE CE TOMA OP*(CO TTMA& mat1,CO TOMA& mat2)NE{RE mat2.Action(mat1);} // AAA 常設でないライブラリは以上に挿入する。 #define INCLUDE_SUB #include __FILE__ #else // INCLUDE_LIBRARY #ifdef DEBUG #define _GLIBCXX_DEBUG #define REPEAT_MAIN( BOUND ) START_MAIN; signal( SIGABRT , &AlertAbort ); AutoCheck( exec_mode , use_getline ); if( exec_mode == sample_debug_mode || exec_mode == submission_debug_mode || exec_mode == library_search_mode ){ RE 0; } else if( exec_mode == experiment_mode ){ Experiment(); RE 0; } else if( exec_mode == small_test_mode ){ SmallTest(); RE 0; }; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if( exec_mode == solve_mode ){ if CE( bound_test_case_num > 1 ){ CERR( "テストケースの個数を入力してください。" ); SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } } else if( exec_mode == random_test_mode ){ CERR( "ランダムテストを行う回数を指定してください。" ); SET_LL( test_case_num ); } FINISH_MAIN #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE2 ) #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX ) ); AS( ( MIN ) <= A && A <= ( MAX ) ) #define SET_ASSERT( A , MIN , MAX ) if( exec_mode == solve_mode ){ SET_LL( A ); ASSERT( A , MIN , MAX ); } else if( exec_mode == random_test_mode ){ CERR( #A , " = " , ( A = GetRand( MIN , MAX ) ) ); } else { AS( false ); } #define SOLVE_ONLY ST_AS( __FUNCTION__[0] == 'S' ) #define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl #define COUT( ... ) VariadicCout( cout << "出力: " , __VA_ARGS__ ) << endl #define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl #define COUT_A( A , N ) cout << "出力: "; OUTPUT_ARRAY( cout , A , N ) << endl #define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl #define COUT_ITR( A ) cout << "出力: "; OUTPUT_ITR( cout , A ) << endl #else #pragma GCC optimize ( "O3" ) #pragma GCC optimize ( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if CE( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 ) #define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) ) #define SET_ASSERT( A , MIN , MAX ) SET_LL( A ); ASSERT( A , MIN , MAX ) #define SOLVE_ONLY #define CERR( ... ) #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL #define CERR_A( A , N ) #define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << ENDL #define CERR_ITR( A ) #define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << ENDL #endif #ifdef REACTIVE #define ENDL endl #else #define ENDL "\n" #endif #ifdef USE_GETLINE #define SET_LL( A ) { GETLINE( A ## _str ); A = stoll( A ## _str ); } #define GETLINE_SEPARATE( SEPARATOR , ... ) SOLVE_ONLY; string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ ) #define GETLINE( ... ) SOLVE_ONLY; GETLINE_SEPARATE( '\n' , __VA_ARGS__ ) #else #define SET_LL( A ) cin >> A #define CIN( LL , ... ) SOLVE_ONLY; LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ ) #define SET_A( A , N ) SOLVE_ONLY; FOR( VARIABLE_FOR_SET_A , 0 , N ){ cin >> A[VARIABLE_FOR_SET_A]; } #define CIN_A( LL , A , N ) VE A( N ); SET_A( A , N ); #endif #include using namespace std; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define FINISH_MAIN REPEAT( test_case_num ){ if CE( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve(); CERR( "" ); } } #define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now() #define CURRENT_TIME static_cast( chrono::duration_cast( chrono::system_clock::now() - watch ).count() / 1000.0 ) #define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 ) #define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE #define SET_A_ASSERT( A , N , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A] , MIN , MAX ); } #define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX ) #define CIN_A_ASSERT( A , N , MIN , MAX ) vector A( N ); SET_A_ASSERT( A , N , MIN , MAX ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( decldecay_t( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( decldecay_t( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( decldecay_t( INITIAL ) VAR = INITIAL ; VAR + 1 > FINAL ; VAR -- ) #define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .BE() , end_ ## ARRAY = ARRAY .EN() #define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES ) #define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ) #define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?"":" "); } OS #define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.BE() , EN_FOR_OUTPUT_ITR = A.EN(); bool VARIABLE_FOR_OUTPUT_ITR = ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; WH( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR = ++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS #define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); RE #define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; COUT( "(" , #__VA_ARGS__ , ") == (" , __VA_ARGS__ , ") : Naive == " , naive , match ? "==" : "!=" , answer , "== Answer" ); if( !match ){ RE; } // 圧縮用 #define TE template #define TY typename #define US using #define ST static #define AS assert #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begin #define EN end #define SZ size #define LE length #define PW Power #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& #define VI virtual #define ST_AS static_assert #define reMO_CO remove_const #define is_COructible_v is_constructible_v #define rBE rbegin #define reSZ resize // 型のエイリアス #define decldecay_t( VAR ) decay_t TE US ret_t = decltype( declval()( declval()... ) ); TE US inner_t = TY T::type; US uint = unsigned int; US ll = long long; US ull = unsigned long long; US ld = long double; US lld = __float128; TE US T2 = pair; TE US T3 = tuple; TE US T4 = tuple; US path = pair; // 入出力用 TE IN basic_istream& VariadicCin( basic_istream& is ) { RE is; } TE IN basic_istream& VariadicCin( basic_istream& is , Arg& arg , ARGS&... args ) { RE VariadicCin( is >> arg , args... ); } TE IN basic_istream& VariadicGetline( basic_istream& is , CO char& separator ) { RE is; } TE IN basic_istream& VariadicGetline( basic_istream& is , CO char& separator , Arg& arg , ARGS&... args ) { RE VariadicGetline( getline( is , arg , separator ) , separator , args... ); } TE IN basic_ostream& operator<<( basic_ostream& os , CO VE& arg ) { auto BE = arg.BE() , EN = arg.EN(); auto itr = BE; WH( itr != EN ){ ( itr == BE ? os : os << " " ) << *itr; itr++; } RE os; } TE IN basic_ostream& operator<<( basic_ostream& os , CO pair& arg ) { RE os << arg.first << " " << arg.second; } TE IN basic_ostream& VariadicCout( basic_ostream& os , CO Arg& arg ) { RE os << arg; } TE IN basic_ostream& VariadicCout( basic_ostream& os , CO Arg1& arg1 , CO Arg2& arg2 , CO ARGS&... args ) { RE VariadicCout( os << arg1 << " " , arg2 , args... ); } // 算術用 TE CE T PositiveBaseResidue( CO T& a , CO T& p ){ RE a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); } TE CE T Residue( CO T& a , CO T& p ){ RE PositiveBaseResidue( a , p < 0 ? -p : p ); } TE CE T PositiveBaseQuotient( CO T& a , CO T& p ){ RE ( a - PositiveBaseResidue( a , p ) ) / p; } TE CE T Quotient( CO T& a , CO T& p ){ RE p < 0 ? PositiveBaseQuotient( -a , -p ) : PositiveBaseQuotient( a , p ); } #define POWER( ANSWER , ARGUMENT , EXPONENT ) \ ST_AS( ! is_same::value && ! is_same::value ); \ decldecay_t( ARGUMENT ) ANSWER{ 1 }; \ { \ decldecay_t( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \ decldecay_t( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ WH( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ ll ANSWER{ 1 }; \ { \ ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( ARGUMENT ) % ( MODULO ) ) % ( MODULO ); \ ARGUMENT_FOR_SQUARE_FOR_POWER < 0 ? ARGUMENT_FOR_SQUARE_FOR_POWER += ( MODULO ) : ARGUMENT_FOR_SQUARE_FOR_POWER; \ decldecay_t( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ WH( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CE_LENGTH , MODULO ) \ ll ANSWER[CE_LENGTH]; \ ll ANSWER_INV[CE_LENGTH]; \ ll INVERSE[CE_LENGTH]; \ { \ ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \ FOREQ( i , 1 , MAX_INDEX ){ \ ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \ } \ ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ FOREQ( i , 2 , MAX_INDEX ){ \ ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % ( MODULO ) ) ) %= ( MODULO ); \ } \ } \ // 二分探索用 // EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= CO_TARGETの整数解を格納。 #define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , CO_TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \ ST_AS( ! is_same::value && ! is_same::value ); \ ll ANSWER = MINIMUM; \ { \ ll L_BS = MINIMUM; \ ll U_BS = MAXIMUM; \ ANSWER = UPDATE_ANSWER; \ ll EXPRESSION_BS; \ CO ll CO_TARGET_BS = ( CO_TARGET ); \ ll DIFFERENCE_BS; \ WH( L_BS < U_BS ){ \ DIFFERENCE_BS = ( EXPRESSION_BS = ( EXPRESSION ) ) - CO_TARGET_BS; \ CERR( "二分探索中:" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS :" , #EXPRESSION , "=" , EXPRESSION_BS , DIFFERENCE_BS > 0 ? ">" : DIFFERENCE_BS < 0 ? "<" : "=" , CO_TARGET_BS , "=" , #CO_TARGET ); \ if( DIFFERENCE_BS INEQUALITY_FOR_CHECK 0 ){ \ U_BS = UPDATE_U; \ } else { \ L_BS = UPDATE_L; \ } \ ANSWER = UPDATE_ANSWER; \ } \ if( L_BS > U_BS ){ \ CERR( "二分探索失敗:" , "L_BS =" , L_BS , ">" , U_BS , "= U_BS :" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \ CERR( "二分探索マクロにミスがある可能性があります。変更前の版に戻してください。" ); \ ANSWER = MAXIMUM + 1; \ } else { \ CERR( "二分探索終了:" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS" ); \ CERR( "二分探索が成功したかを確認するために" , #EXPRESSION , "を計算します。" ); \ CERR( "成功判定が不要な場合はこの計算を削除しても構いません。" ); \ EXPRESSION_BS = ( EXPRESSION ); \ CERR( "二分探索結果:" , #EXPRESSION , "=" , EXPRESSION_BS , ( EXPRESSION_BS > CO_TARGET_BS ? ">" : EXPRESSION_BS < CO_TARGET_BS ? "<" : "=" ) , CO_TARGET_BS ); \ if( EXPRESSION_BS DESIRED_INEQUALITY CO_TARGET_BS ){ \ CERR( "二分探索成功:" , #ANSWER , ":=" , ANSWER ); \ } else { \ CERR( "二分探索失敗:" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \ CERR( "単調でないか、単調増加性と単調減少性を逆にしてしまったか、探索範囲内に解が存在しません。" ); \ ANSWER = MAXIMUM + 1; \ } \ } \ } \ // 単調増加の時にEXPRESSION >= CO_TARGETの最小解を格納。 #define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , >= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) // 単調増加の時にEXPRESSION <= CO_TARGETの最大解を格納。 #define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , > , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) // 単調減少の時にEXPRESSION >= CO_TARGETの最大解を格納。 #define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , < , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) // 単調減少の時にEXPRESSION <= CO_TARGETの最小解を格納。 #define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , <= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) // t以下の値が存在すればその最大値のiterator、存在しなければend()を返す。 TE IN TY set::iterator MaximumLeq( set& S , CO T& t ) { CO auto EN = S.EN(); if( S.empty() ){ RE EN; } auto itr = S.upper_bound( t ); RE itr == EN ? S.find( *( S.rBE() ) ) : itr == S.BE() ? EN : --itr; } // t未満の値が存在すればその最大値のiterator、存在しなければend()を返す。 TE IN TY set::iterator MaximumLt( set& S , CO T& t ) { CO auto EN = S.EN(); if( S.empty() ){ RE EN; } auto itr = S.lower_bound( t ); RE itr == EN ? S.find( *( S.rBE() ) ) : itr == S.BE() ? EN : --itr; } // t以上の値が存在すればその最小値のiterator、存在しなければend()を返す。 TE IN TY set::iterator MinimumGeq( set& S , CO T& t ) { RE S.lower_bound( t ); } // tより大きい値が存在すればその最小値のiterator、存在しなければend()を返す。 TE IN TY set::iterator MinimumGt( set& S , CO T& t ) { RE S.upper_bound( t ); } // 尺取り法用 // VAR_TPAがINITからUPDATEを繰り返しCONTINUE_CONDITIONを満たす限り、ON_CONDITIONを判定して // trueならON、falseならOFFとなる。直近のONの区間を[VAR_TPA_L,VAR_TPA_R)で管理する。 #define TPA( VAR_TPA , INIT , UPDATE , CONTINUE_CONDITION , ON_CONDITION , ONON , ONOFF , OFFON , OFFOFF , FINISH ) \ { \ auto VAR_TPA = INIT; \ auto VAR_TPA ## _L = VAR_TPA; \ auto VAR_TPA ## _R = VAR_TPA; \ bool on_TPA = false; \ int state_TPA = 3; \ WH( CONTINUE_CONDITION ){ \ bool on_TPA_next = ON_CONDITION; \ state_TPA = ( ( on_TPA ? 1 : 0 ) << 1 ) | ( on_TPA_next ? 1 : 0 ); \ CERR( "尺取り中: [L,R) = [" , VAR_TPA ## _L , "," , VAR_TPA ## _R , ") ," , #VAR_TPA , "=" , VAR_TPA , "," , ( ( state_TPA >> 1 ) & 1 ) == 1 ? "on" : "off" , " ->" , ( state_TPA & 1 ) == 1 ? "on" : "off" ); \ if( state_TPA == 0 ){ \ OFFOFF; VAR_TPA ## _L = VAR_TPA ## _R = VAR_TPA; UPDATE; \ } else if( state_TPA == 1 ){ \ OFFON; VAR_TPA ## _L = VAR_TPA; UPDATE; VAR_TPA ## _R = VAR_TPA; \ } else if( state_TPA == 2 ){ \ ONOFF; VAR_TPA ## _L = VAR_TPA ## _R = VAR_TPA; UPDATE; \ } else { \ ONON; UPDATE; VAR_TPA ## _R = VAR_TPA; \ } \ on_TPA = on_TPA_next; \ } \ CERR( "尺取り終了: [L,R) = [" , VAR_TPA ## _L , "," , VAR_TPA ## _R , ") ," , #VAR_TPA , "=" , VAR_TPA ); \ FINISH; \ } \ // データ構造用 TE TY V> IN V OP+( CO V& a0 , CO V& a1 ) { if( a0.empty() ){ RE a1; } if( a1.empty() ){ RE a0; } AS( a0.SZ() == a1.SZ() ); V answer{}; for( auto itr0 = a0.BE() , itr1 = a1.BE() , EN0 = a0.EN(); itr0 != EN0 ; itr0++ , itr1++ ){ answer.push_back( *itr0 + *itr1 ); } RE answer; } TE IN pair OP+( CO pair& t0 , CO pair& t1 ) { RE { t0.first + t1.first , t0.second + t1.second }; } TE IN tuple OP+( CO tuple& t0 , CO tuple& t1 ) { RE { get<0>( t0 ) + get<0>( t1 ) , get<1>( t0 ) + get<1>( t1 ) , get<2>( t0 ) + get<2>( t1 ) }; } TE IN tuple OP+( CO tuple& t0 , CO tuple& t1 ) { RE { get<0>( t0 ) + get<0>( t1 ) , get<1>( t0 ) + get<1>( t1 ) , get<2>( t0 ) + get<2>( t1 ) , get<3>( t0 ) + get<3>( t1 ) }; } TE IN T Add( CO T& t0 , CO T& t1 ) { RE t0 + t1; } TE IN T XorAdd( CO T& t0 , CO T& t1 ){ RE t0 ^ t1; } TE IN T Multiply( CO T& t0 , CO T& t1 ) { RE t0 * t1; } TE IN CO T& Zero() { ST CO T z{}; RE z; } TE IN CO T& One() { ST CO T o = 1; RE o; }\ TE IN T AddInv( CO T& t ) { RE -t; } TE IN T Id( CO T& v ) { RE v; } TE IN T Min( CO T& a , CO T& b ){ RE a < b ? a : b; } TE IN T Max( CO T& a , CO T& b ){ RE a < b ? b : a; } TE TY V> IN auto Get( CO V& a ) { return [&]( CRI i = 0 ){ RE a[i]; }; } // グリッド問題用 int H , W , H_minus , W_minus , HW; VE> non_wall; IN T2 EnumHW( CRI v ) { RE { v / W , v % W }; } IN int EnumHW_inv( CO T2& ij ) { auto& [i,j] = ij; RE i * W + j; } CO string direction[4] = {"U","R","D","L"}; // (i,j)->(k,h)の方向番号を取得 IN int DirectionNumberOnGrid( CRI i , CRI j , CRI k , CRI h ){RE ik?0:jh?3:(AS(false),-1);} // v->wの方向番号を取得 IN int DirectionNumberOnGrid( CRI v , CRI w ){auto [i,j]=EnumHW(v);auto [k,h]=EnumHW(w);RE DirectionNumberOnGrid(i,j,k,h);} // 方向番号の反転U<->D、R<->L IN int ReverseDirectionNumberOnGrid( CRI n ){AS(0<=n&&n<4);RE(n+2)%4;} IN VO SetEdgeOnGrid( CO string& Si , CRI i , VE>& e , CO char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){int v = EnumHW_inv({i,j});if(i>0){e[EnumHW_inv({i-1,j})].push_back(v);}if(i+10){e[EnumHW_inv({i,j-1})].push_back(v);}if(j+1>& e , CO char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){CO int v=EnumHW_inv({i,j});if(i>0){e[EnumHW_inv({i-1,j})].push_back({v,1});}if(i+10){e[EnumHW_inv({i,j-1})].push_back({v,1});}if(j+1>& non_wall , CO char& walkable = '.' , CO char& unwalkable = '#' ){non_wall.push_back(VE(W));auto& non_wall_i=non_wall[i];FOR(j,0,W){non_wall_i[j]=Si[j]==walkable?true:(assert(Si[j]==unwalkable),false);}} // デバッグ用 #ifdef DEBUG IN VO AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); } VO AutoCheck( int& exec_mode , CO bool& use_getline ); IN VO Solve(); IN VO Experiment(); IN VO SmallTest(); IN VO RandomTest(); ll GetRand( CRL Rand_min , CRL Rand_max ); IN VO BreakPoint( CRI LINE ) {} int exec_mode; CEXPR( int , solve_mode , 0 ); CEXPR( int , sample_debug_mode , 1 ); CEXPR( int , submission_debug_mode , 2 ); CEXPR( int , library_search_mode , 3 ); CEXPR( int , experiment_mode , 4 ); CEXPR( int , small_test_mode , 5 ); CEXPR( int , random_test_mode , 6 ); #ifdef USE_GETLINE CEXPR( bool , use_getline , true ); #else CEXPR( bool , use_getline , false ); #endif #else ll GetRand( CRL Rand_min , CRL Rand_max ) { ll answer = time( NULL ); RE answer * rand() % ( Rand_max + 1 - Rand_min ) + Rand_min; } #endif // VVV 常設ライブラリは以下に挿入する。 // Map (1KB) // c:/Users/user/Documents/Programming/Mathematics/Function/Map/compress.txt CL is_ordered{PU:is_ordered()= delete;TE ST CE auto Check(CO T& t)-> decltype(t < t,true_type());ST CE false_type Check(...);TE ST CE CO bool value = is_same_v< decltype(Check(declval())),true_type >;}; TE US Map = conditional_t>,unordered_map,conditional_t,map,VO>>; // Algebra (4KB) // c:/Users/user/Documents/Programming/Mathematics/Algebra/compress.txt #define DC_OF_CPOINT(POINT)IN CO U& POINT()CO NE #define DC_OF_POINT(POINT)IN U& POINT()NE #define DF_OF_CPOINT(POINT)TE IN CO U& VirtualPointedSet::POINT()CO NE{RE Point();} #define DF_OF_POINT(POINT)TE IN U& VirtualPointedSet::POINT()NE{RE Point();} TE CL UnderlyingSet{PU:US type = U;};TE CL VirtualPointedSet:VI PU UnderlyingSet{PU:VI CO U& Point()CO NE = 0;VI U& Point()NE = 0;DC_OF_CPOINT(Unit);DC_OF_CPOINT(Zero);DC_OF_CPOINT(One);DC_OF_CPOINT(Infty);DC_OF_POINT(init);DC_OF_POINT(root);};TE CL PointedSet:VI PU VirtualPointedSet{PU:U m_b_U;IN PointedSet(CO U& b_u = U());IN CO U& Point()CO NE;IN U& Point()NE;};TE CL VirtualNSet:VI PU UnderlyingSet{PU:VI U Transfer(CO U& u)= 0;IN U Inverse(CO U& u);};TE CL AbstractNSet:VI PU VirtualNSet{PU:F_U m_f_U;IN AbstractNSet(F_U f_U);IN U Transfer(CO U& u);};TE CL VirtualMagma:VI PU UnderlyingSet{PU:VI U Product(CO U& u0,CO U& u1)= 0;IN U Sum(CO U& u0,CO U& u1);};TE CL AdditiveMagma:VI PU VirtualMagma{PU:IN U Product(CO U& u0,CO U& u1);};TE CL MultiplicativeMagma:VI PU VirtualMagma{PU:IN U Product(CO U& u0,CO U& u1);};TE CL AbstractMagma:VI PU VirtualMagma{PU:M_U m_m_U;IN AbstractMagma(M_U m_U);IN U Product(CO U& u0,CO U& u1);}; TE IN PointedSet::PointedSet(CO U& b_U):m_b_U(b_U){}TE IN CO U& PointedSet::Point()CO NE{RE m_b_U;}TE IN U& PointedSet::Point()NE{RE m_b_U;}DF_OF_CPOINT(Unit);DF_OF_CPOINT(Zero);DF_OF_CPOINT(One);DF_OF_CPOINT(Infty);DF_OF_POINT(init);DF_OF_POINT(root);TE IN AbstractNSet::AbstractNSet(F_U f_U):m_f_U(MO(f_U)){ST_AS(is_invocable_r_v);}TE IN U AbstractNSet::Transfer(CO U& u){RE m_f_U(u);}TE IN U VirtualNSet::Inverse(CO U& u){RE Transfer(u);}TE IN AbstractMagma::AbstractMagma(M_U m_U):m_m_U(MO(m_U)){ST_AS(is_invocable_r_v);}TE IN U AdditiveMagma::Product(CO U& u0,CO U& u1){RE u0 + u1;}TE IN U MultiplicativeMagma::Product(CO U& u0,CO U& u1){RE u0 * u1;}TE IN U AbstractMagma::Product(CO U& u0,CO U& u1){RE m_m_U(u0,u1);}TE IN U VirtualMagma::Sum(CO U& u0,CO U& u1){RE Product(u0,u1);} TE CL VirtualMonoid:VI PU VirtualMagma,VI PU VirtualPointedSet{};TE CL AdditiveMonoid:VI PU VirtualMonoid,PU AdditiveMagma,PU PointedSet{};TE CL MultiplicativeMonoid:VI PU VirtualMonoid,PU MultiplicativeMagma,PU PointedSet{PU:IN MultiplicativeMonoid(CO U& e_U);};TE CL AbstractMonoid:VI PU VirtualMonoid,PU AbstractMagma,PU PointedSet{PU:IN AbstractMonoid(M_U m_U,CO U& e_U);}; TE IN MultiplicativeMonoid::MultiplicativeMonoid(CO U& e_U):PointedSet(e_U){}TE IN AbstractMonoid::AbstractMonoid(M_U m_U,CO U& e_U):AbstractMagma(MO(m_U)),PointedSet(e_U){} TE CL VirtualGroup:VI PU VirtualMonoid,VI PU VirtualPointedSet,VI PU VirtualNSet{};TE CL AdditiveGroup:VI PU VirtualGroup,PU AdditiveMonoid{PU:IN U Transfer(CO U& u);};TE CL AbstractGroup:VI PU VirtualGroup,PU AbstractMonoid,PU AbstractNSet{PU:IN AbstractGroup(M_U m_U,CO U& e_U,I_U i_U);}; TE IN AbstractGroup::AbstractGroup(M_U m_U,CO U& e_U,I_U i_U):AbstractMonoid(MO(m_U),e_U),AbstractNSet(MO(i_U)){}TE IN U AdditiveGroup::Transfer(CO U& u){RE -u;} // Graph (5KB) // c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/compress.txt TE CL VirtualGraph:VI PU UnderlyingSet{PU:VI R1 Enumeration(CRI i)= 0;IN R2 Enumeration_inv(CO T& t);TE IN R2 Enumeration_inv(CO PATH& p);IN VO Reset();VI CRI SZ()CO NE = 0;VI E& edge()NE = 0;VI ret_t Edge(CO T& t)= 0;VI IN R2 Enumeration_inv_Body(CO T& t)= 0;};TE CL EdgeImplimentation:VI PU VirtualGraph{PU:int m_SZ;E m_edge;IN EdgeImplimentation(CRI SZ,E edge);IN CRI SZ()CO NE;IN E& edge()NE;IN ret_t Edge(CO T& t);};TE CL Graph:PU EdgeImplimentation{PU:IN Graph(CRI SZ,E edge);IN CRI Enumeration(CRI i);TE IN Graph GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CRI t);};TE CL EnumerationGraph:PU EdgeImplimentation,ret_t,E>{PU:Enum_T m_enum_T;Enum_T_inv m_enum_T_inv;IN EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge);IN ret_t Enumeration(CRI i);TE IN EnumerationGraph GetGraph(F edge)CO;IN ret_t Enumeration_inv_Body(CO T& t);};TE EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge)-> EnumerationGraph()(0)),Enum_T,Enum_T_inv,E>;TE CL MemorisationGraph:PU EdgeImplimentation{PU:int m_LE;VE m_memory;Map m_memory_inv;IN MemorisationGraph(CRI SZ,E edge);IN T Enumeration(CRI i);IN VO Reset();TE IN MemorisationGraph GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CO T& t);};TE MemorisationGraph(CRI SZ,E edge)-> MemorisationGraph()().back()),E>;TE MemorisationGraph(CRI SZ,E edge)-> MemorisationGraph(declval()().back())),E>; TE IN EdgeImplimentation::EdgeImplimentation(CRI SZ,E edge):m_SZ(SZ),m_edge(MO(edge)){ST_AS(is_COructible_v && is_COructible_v && is_invocable_v);}TE IN Graph::Graph(CRI SZ,E edge):EdgeImplimentation(SZ,MO(edge)){}TE IN EnumerationGraph::EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge):EdgeImplimentation,ret_t,E>(SZ,MO(edge)),m_enum_T(MO(enum_T)),m_enum_T_inv(MO(enum_T_inv)){}TE IN MemorisationGraph::MemorisationGraph(CRI SZ,E edge):EdgeImplimentation(SZ,MO(edge)),m_LE(),m_memory(),m_memory_inv(){ST_AS(is_invocable_v && is_invocable_v);}TE IN CRI Graph::Enumeration(CRI i){RE i;}TE IN ret_t EnumerationGraph::Enumeration(CRI i){RE m_enum_T(i);}TE IN T MemorisationGraph::Enumeration(CRI i){AS(0 <= i && i < m_LE);RE m_memory[i];}TE IN R2 VirtualGraph::Enumeration_inv(CO T& t){RE Enumeration_inv_Body(t);}TE TE IN R2 VirtualGraph::Enumeration_inv(CO PATH& p){RE Enumeration_inv_Body(get<0>(p));}TE IN CRI Graph::Enumeration_inv_Body(CRI i){RE i;}TE IN ret_t EnumerationGraph::Enumeration_inv_Body(CO T& t){RE m_enum_T_inv(t);}TE IN CRI MemorisationGraph::Enumeration_inv_Body(CO T& t){if(m_memory_inv.count(t)== 0){AS(m_LE < TH->SZ());m_memory.push_back(t);RE m_memory_inv[t]= m_LE++;}RE m_memory_inv[t];}TE VO VirtualGraph::Reset(){}TE IN VO MemorisationGraph::Reset(){m_LE = 0;m_memory.clear();m_memory_inv.clear();}TE IN CRI EdgeImplimentation::SZ()CO NE{RE m_SZ;}TE IN E& EdgeImplimentation::edge()NE{RE m_edge;}TE IN ret_t EdgeImplimentation::Edge(CO T& t){RE m_edge(t);}TE TE IN Graph Graph::GetGraph(F edge)CO{RE Graph(TH->SZ(),MO(edge));}TE TE IN EnumerationGraph EnumerationGraph::GetGraph(F edge)CO{RE EnumerationGraph(TH->SZ(),m_enum_T,m_enum_T_inv,MO(edge));}TE TE IN MemorisationGraph MemorisationGraph::GetGraph(F edge)CO{RE MemorisationGraph(TH->SZ(),MO(edge));} // ConstexprModulo (7KB) // c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Mod/ConstexprModulo/compress.txt #define RP Represent #define DeRP Derepresent #define MN Montgomery CEXPR(int,P,998244353); TE CE INT RS(INT n)NE{RE MO(n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n < INT(M)?n:n %= M);} #define DC_OF_CM_FOR_MN(OPR)CE bool OP OPR(CO MN& n)CO NE #define DC_OF_AR_FOR_MN(OPR,EX)IN MN OP OPR(MN n)CO EX; #define DF_OF_CM_FOR_MN(OPR)TE CE bool MN::OP OPR(CO MN& n)CO NE{RE m_n OPR n.m_n;} #define DF_OF_AR_FOR_MN(OPR,EX,LEFT,OPR2)TE IN MN MN::OP OPR(MN n)CO EX{RE MO(LEFT OPR2 ## = *TH);}TE IN MN OP OPR(T n0,CO MN& n1)EX{RE MO(MN(MO(n0))OPR ## = n1);} TE CL MN{PU:uint m_n;CE MN()NE;CE MN(CO MN& n)NE;CE MN(MN&& n)NE;TE CE MN(T n)NE;CE MN& OP=(MN n)NE;CE MN& OP+=(CO MN& n)NE;CE MN& OP-=(CO MN& n)NE;CE MN& OP*=(CO MN& n)NE;IN MN& OP/=(MN n);TE CE MN& OP<<=(INT n);TE CE MN& OP>>=(INT n);CE MN& OP++()NE;CE MN OP++(int)NE;CE MN& OP--()NE;CE MN OP--(int)NE;DC_OF_CM_FOR_MN(==);DC_OF_CM_FOR_MN(!=);DC_OF_AR_FOR_MN(+,NE);DC_OF_AR_FOR_MN(-,NE);DC_OF_AR_FOR_MN(*,NE);DC_OF_AR_FOR_MN(/,);TE CE MN OP^(INT EX)CO;TE CE MN OP<<(INT n)CO;TE CE MN OP>>(INT n)CO;CE MN OP-()CO NE;CE MN& SignInvert()NE;CE MN& Invert();TE CE MN& PW(INT EX);CE VO swap(MN& n)NE;CE uint RP()CO NE;ST CE MN DeRP(CO uint& n)NE;ST IN CO MN& Inverse(CO uint& n);ST IN CO MN& Factorial(CO uint& n);ST IN CO MN& FactorialInverse(CO uint& n);ST IN MN Combination(CO uint& n,CO uint& i);ST IN CO MN& zero()NE;ST IN CO MN& one()NE;ST IN CO MN& two()NE;ST CE uint Form(CO uint& n)NE;ST CE ull& Reduction(ull& n)NE;ST CE ull& ReducedMU(ull& n,CO uint& m)NE;ST CE uint BaseSquareTruncation(uint& n)NE;TE CE MN& PositivePW(INT EX)NE;TE CE MN& NonNegativePW(INT EX)NE;TE CE MN& Ref(T&& n)NE;ST CE uint& Normalise(uint& n)NE;}; US MP = MN

; TE CL COantsForMN{PU:COantsForMN()= delete;ST CE CO bool g_even =((M & 1)== 0);ST CE CO uint g_memory_bound = #ifdef DEBUG 1e3; #else 1e6; #endif ST CE CO uint g_memory_LE = M < g_memory_bound?M:g_memory_bound;ST CE uint g_M_minus_2 = M - 2;ST CE uint g_M_minus_2_neg = 2 - M;ST CE ull MNBasePW(ull&& EX)NE;ST CE CO int g_MN_digit = 32;ST CE CO ull g_MN_base = ull(1)<< g_MN_digit;ST CE CO uint g_MN_base_minus = uint(g_MN_base - 1);ST CE CO uint g_MN_digit_half =(g_MN_digit + 1)>> 1;ST CE CO uint g_MN_base_sqrt_minus =(1 << g_MN_digit_half)- 1;ST CE CO uint g_MN_M_neg_inverse = uint((g_MN_base - MNBasePW((ull(1)<<(g_MN_digit - 1))- 1))& g_MN_base_minus);ST CE CO uint g_MN_base_mod = uint(g_MN_base % M);ST CE CO uint g_MN_base_square_mod = uint(((g_MN_base % M)*(g_MN_base % M))% M);}; TE CE ull COantsForMN::MNBasePW(ull&& EX)NE{ull prod = 1;ull PW = M;WH(EX != 0){(EX & 1)== 1?(prod *= PW)&= g_MN_base_minus:prod;EX >>= 1;(PW *= PW)&= g_MN_base_minus;}RE prod;}TE CE MN::MN()NE:m_n(){ST_AS(!COantsForMN::g_even);}TE CE MN::MN(CO MN& n)NE:m_n(n.m_n){}TE CE MN::MN(MN&& n)NE:m_n(MO(n.m_n)){}TE TE CE MN::MN(T n)NE:m_n(Form(RS(MO(n)))){ST_AS(!COantsForMN::g_even && is_COructible_v >);}TE CE MN& MN::OP=(MN n)NE{RE Ref(m_n = MO(n.m_n));}TE CE MN& MN::OP+=(CO MN& n)NE{RE Ref(Normalise(m_n += n.m_n));}TE CE MN& MN::OP-=(CO MN& n)NE{RE Ref(m_n < n.m_n?(m_n += M)-= n.m_n:m_n -= n.m_n);}TE CE MN& MN::OP*=(CO MN& n)NE{ull m_n_copy = m_n;RE Ref(m_n = MO(ReducedMU(m_n_copy,n.m_n)));}TE IN MN& MN::OP/=(MN n){RE OP*=(MN(n).Invert());}TE TE CE MN& MN::OP<<=(INT n){RE AS(n >= 0);RE *TH *= MN(two()).NonNegativePW(MO(n));}TE TE CE MN& MN::OP>>=(INT n){AS(n >=0);WH(n-- > 0){((m_n & 1)== 0?m_n:m_n += M)>>= 1;}RE *TH;}TE CE MN& MN::OP++()NE{RE Ref(Normalise(m_n += COantsForMN::g_MN_base_mod));}TE CE MN MN::OP++(int)NE{MN n{*TH};OP++();RE n;}TE CE MN& MN::OP--()NE{RE Ref((m_n < COantsForMN::g_MN_base_mod?m_n += M:m_n)-= COantsForMN::g_MN_base_mod);}TE CE MN MN::OP--(int)NE{MN n{*TH};OP--();RE n;}DF_OF_CM_FOR_MN(==);DF_OF_CM_FOR_MN(!=);DF_OF_AR_FOR_MN(+,NE,n,+);DF_OF_AR_FOR_MN(-,NE,n.SignInvert(),+);DF_OF_AR_FOR_MN(*,NE,n,*);DF_OF_AR_FOR_MN(/,,n.Invert(),*);TE TE CE MN MN::OP^(INT EX)CO{RE MO(MN(*TH).PW(MO(EX)));}TE TE CE MN MN::OP<<(INT n)CO{RE MO(MN(*TH)<<= MO(n));}TE TE CE MN MN::OP>>(INT n)CO{RE MO(MN(*TH)>>= MO(n));}TE CE MN MN::OP-()CO NE{RE MO(MN(*TH).SignInvert());}TE CE MN& MN::SignInvert()NE{RE Ref(m_n > 0?m_n = M - m_n:m_n);}TE CE MN& MN::Invert(){AS(m_n != 0);RE PositivePW(uint(COantsForMN::g_M_minus_2));}TE TE CE MN& MN::PositivePW(INT EX)NE{MN PW{*TH};(--EX)%= COantsForMN::g_M_minus_2;WH(EX != 0){(EX & 1)== 1?*TH *= PW:*TH;EX >>= 1;PW *= PW;}RE *TH;}TE TE CE MN& MN::NonNegativePW(INT EX)NE{RE EX == 0?Ref(m_n = COantsForMN::g_MN_base_mod):PositivePW(MO(EX));}TE TE CE MN& MN::PW(INT EX){bool neg = EX < 0;AS(!(neg && m_n == 0));RE neg?PositivePW(MO(EX *= COantsForMN::g_M_minus_2_neg)):NonNegativePW(MO(EX));}TE CE VO MN::swap(MN& n)NE{std::swap(m_n,n.m_n);}TE CE uint MN::RP()CO NE{ull m_n_copy = m_n;RE MO(Reduction(m_n_copy));}TE CE MN MN::DeRP(CO uint& n)NE{MN n_copy{};n_copy.m_n = Form(n);RE n_copy;}TE IN CO MN& MN::Inverse(CO uint& n){AS(n < COantsForMN::g_memory_LE);ST uint memory0[COantsForMN::g_memory_LE]={0,1};ST MN memory1[COantsForMN::g_memory_LE]={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory1[LE_curr].m_n = Form(memory0[LE_curr]= M - memory0[M % LE_curr]* ull(M / LE_curr)% M);LE_curr++;}RE memory1[n];}TE IN CO MN& MN::Factorial(CO uint& n){AS(n < COantsForMN::g_memory_LE);ST MN memory[COantsForMN::g_memory_LE]={one(),one()};ST uint LE_curr = 2;ST MN val_curr{one()};ST MN val_last{one()};WH(LE_curr <= n){memory[LE_curr++]= val_curr *= ++val_last;}RE memory[n];}TE IN CO MN& MN::FactorialInverse(CO uint& n){ST MN memory[COantsForMN::g_memory_LE]={one(),one()};ST uint LE_curr = 2;ST MN val_curr{one()};ST MN val_last{one()};WH(LE_curr <= n){memory[LE_curr]= val_curr *= Inverse(LE_curr);LE_curr++;}RE memory[n];}TE IN MN MN::Combination(CO uint& n,CO uint& i){RE i <= n?Factorial(n)* FactorialInverse(i)* FactorialInverse(n - i):zero();}TE IN CO MN& MN::zero()NE{ST CE CO MN z{};RE z;}TE IN CO MN& MN::one()NE{ST CE CO MN o{1};RE o;}TE IN CO MN& MN::two()NE{ST CE CO MN t{2};RE t;}TE CE uint MN::Form(CO uint& n)NE{ull n_copy = n;RE uint(MO(Reduction(n_copy *= COantsForMN::g_MN_base_square_mod)));}TE CE ull& MN::Reduction(ull& n)NE{ull n_sub = n & COantsForMN::g_MN_base_minus;RE((n +=((n_sub *= COantsForMN::g_MN_M_neg_inverse)&= COantsForMN::g_MN_base_minus)*= M)>>= COantsForMN::g_MN_digit)< M?n:n -= M;}TE CE ull& MN::ReducedMU(ull& n,CO uint& m)NE{RE Reduction(n *= m);}TE CE uint MN::BaseSquareTruncation(uint& n)NE{CO uint n_u = n >> COantsForMN::g_MN_digit_half;n &= COantsForMN::g_MN_base_sqrt_minus;RE n_u;}TE TE CE MN& MN::Ref(T&& n)NE{RE *TH;}TE CE uint& MN::Normalise(uint& n)NE{RE n < M?n:n -= M;}TE CE MN Inverse(CO MN& n){RE MO(MN(n).Invert());}TE CE MN PW(MN n,INT EX){RE MO(n.PW(MO(EX)));}TE CE VO swap(MN& n0,MN& n1)NE{n0.swap(n1);}TE IN string to_string(CO MN& n)NE{RE to_string(n.RP())+ to_string(M)+ "Z";}TE IN basic_istream& OP>>(basic_istream& is,MN& n){ll m;is >> m;n = m;RE is;}TE IN basic_ostream& OP<<(basic_ostream& os,CO MN& n){RE os << n.RP();} // AAA 常設ライブラリは以上に挿入する。 #define INCLUDE_LIBRARY #include __FILE__ #endif // INCLUDE_LIBRARY #endif // INCLUDE_SUB #endif // INCLUDE_MAIN