#pragma GCC optimize("O2")
#include <algorithm>
#include <array>
#include <bit>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <compare>
#include <complex>
#include <concepts>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numbers>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <ranges>
#include <set>
#include <span>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <variant>

//#define int ll
#define INT128_MAX (__int128)(((unsigned __int128) 1 << ((sizeof(__int128) * __CHAR_BIT__) - 1)) - 1)
#define INT128_MIN (-INT128_MAX - 1)

#define clock chrono::steady_clock::now().time_since_epoch().count()

#ifdef DEBUG
#define dbg(x) cout << (#x) << " = " << x << '\n'
#else
#define dbg(x)
#endif

namespace R = std::ranges;
namespace V = std::views;

using namespace std;

using ll = long long;
using ull = unsigned long long;
using ldb = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
//#define double ldb

template<class T>
ostream& operator<<(ostream& os, const pair<T, T> pr) {
  return os << pr.first << ' ' << pr.second;
}
template<class T, size_t N>
ostream& operator<<(ostream& os, const array<T, N> &arr) {
  for(const T &X : arr)
    os << X << ' ';
  return os;
}
template<class T>
ostream& operator<<(ostream& os, const vector<T> &vec) {
  for(const T &X : vec)
    os << X << ' ';
  return os;
}
template<class T>
ostream& operator<<(ostream& os, const set<T> &s) {
  for(const T &x : s)
    os << x << ' ';
  return os;
}

//reference: https://github.com/NyaanNyaan/library/blob/master/modint/montgomery-modint.hpp#L10
//note: mod should be a prime less than 2^30.

template<uint32_t mod>
struct MontgomeryModInt {
  using mint = MontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 res = 1, base = mod;
    for(i32 i = 0; i < 31; i++)
      res *= base, base *= base;
    return -res;
  }

  static constexpr u32 get_mod() {
    return mod;
  }

  static constexpr u32 n2 = -u64(mod) % mod; //2^64 % mod
  static constexpr u32 r = get_r(); //-P^{-1} % 2^32

  u32 a;

  static u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * r) * mod) >> 32;
  }

  static u32 transform(const u64 &b) {
    return reduce(u64(b) * n2);
  }

  MontgomeryModInt() : a(0) {}
  MontgomeryModInt(const int64_t &b) 
    : a(transform(b % mod + mod)) {}

  mint pow(u64 k) const {
    mint res(1), base(*this);
    while(k) {
      if (k & 1) 
        res *= base;
      base *= base, k >>= 1;
    }
    return res;
  }

  mint inverse() const { return (*this).pow(mod - 2); }

  u32 get() const {
    u32 res = reduce(a);
    return res >= mod ? res - mod : res;
  }

  mint& operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  mint& operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  mint& operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  mint& operator/=(const mint &b) {
    a = reduce(u64(a) * b.inverse().a);
    return *this;
  }

  mint operator-() { return mint() - mint(*this); }
  bool operator==(mint b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  bool operator!=(mint b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }

  friend mint operator+(mint a, mint b) { return a += b; }
  friend mint operator-(mint a, mint b) { return a -= b; }
  friend mint operator*(mint a, mint b) { return a *= b; }
  friend mint operator/(mint a, mint b) { return a /= b; }

  friend ostream& operator<<(ostream& os, const mint& b) {
    return os << b.get();
  }
  friend istream& operator>>(istream& is, mint& b) {
    int64_t val;
    is >> val;
    b = mint(val);
    return is;
  }
};

using mint = MontgomeryModInt<998244353>;

template<class Mint>
struct binomial {
  vector<Mint> _fac, _facInv;
  binomial(int size) : _fac(size), _facInv(size) {
    _fac[0] = 1;
    for(int i = 1; i < size; i++)
      _fac[i] = _fac[i - 1] * i;
    if (size > 0)
      _facInv.back() = 1 / _fac.back();
    for(int i = size - 2; i >= 0; i--)
      _facInv[i] = _facInv[i + 1] * (i + 1);
  }

  Mint fac(int i) { return i < 0 ? 0 : _fac[i]; }
  Mint faci(int i) { return i < 0 ? 0 : _facInv[i]; }
  Mint binom(int n, int r) { return r < 0 or n < r ? 0 : fac(n) * faci(r) * faci(n - r); }
};

template<class T>
struct fenwickTree {
  const int size;
  vector<T> data;

  fenwickTree(int _size) : size(_size + 1), data(_size + 1) {}
  fenwickTree(vector<T> &init) : size(ssize(init) + 1), data(ssize(init) + 1) {
    partial_sum(init.begin(), init.end(), data.begin() + 1);
    for(int i = size - 1; i > 0; i--)
      data[i] -= data[i - (i & (-i))];
  }

  void add(int i, T d) {
    for(i += 1; i < size; i += i & (-i))
      data[i] += d;
  }

  T query(int i) {
    T res = T(0);
    for(i += 1; i > 0; i -= i & (-i))
      res += data[i];
    return res;
  }

  T query(int l, int r) {
    return query(r - 1) - query(l - 1);
  }
};

signed main() {
  ios::sync_with_stdio(false), cin.tie(NULL);

  int n; cin >> n;
  vector<int> p(n);
  for(int &x : p) {
    cin >> x;
    x--;
  }

  vector<int> pos(n);
  for(int i = 0; i < n; i++)
    pos[p[i]] = i;

  mint ans = 0;
  fenwickTree<int> ft(n);
  binomial<mint> bn(n);
  for(int v = 0; v < n; v++) {
    if (v > 0) ft.add(pos[v - 1], 1);
    int ld = ft.query(pos[v]);
    int rd = v - ld;
    int lu = pos[v] - ld;
    int ru = (n - 1) - ld - rd - lu;
    ans += bn.binom(ld + ru, max(ld, ru)) * bn.binom(lu + rd, max(lu, rd));
  }

  cout << ans << '\n';

  return 0;
}