#include #include #define rep(i,b) for(int i=0;i=0;i--) #define rep1(i,b) for(int i=1;i=x;i--) #define fore(i,a) for(auto& i:a) #define rng(x) (x).begin(), (x).end() #define rrng(x) (x).rbegin(), (x).rend() #define sz(x) ((int)(x).size()) #define pb push_back #define fi first #define se second #define pcnt __builtin_popcountll using namespace std; using namespace atcoder; using ll = long long; using ld = long double; template using mpq = priority_queue, greater>; template bool chmax(T &a, const T &b) { if (a bool chmin(T &a, const T &b) { if (b ll sumv(const vector&a){ll res(0);for(auto&&x:a)res+=x;return res;} bool yn(bool a) { if(a) {cout << "Yes" << endl; return true;} else {cout << "No" << endl; return false;}} #define retval(x) {cout << #x << endl; return;} #define cout2(x,y) cout << x << " " << y << endl; #define coutp(p) cout << p.fi << " " << p.se << endl; #define out cout << ans << endl; #define outd cout << fixed << setprecision(20) << ans << endl; #define outm cout << ans.val() << endl; #define outv fore(yans , ans) cout << yans << "\n"; #define outdv fore(yans , ans) cout << yans.val() << "\n"; #define assertmle(x) if (!(x)) {vi v(3e8);} #define asserttle(x) if (!(x)) {while(1){}} #define coutv(v) {fore(vy , v) {cout << vy << " ";} cout << endl;} #define coutv2(v) fore(vy , v) cout << vy << "\n"; #define coutvm(v) {fore(vy , v) {cout << vy.val() << " ";} cout << endl;} #define coutvm2(v) fore(vy , v) cout << vy.val() << "\n"; using pll = pair;using pil = pair;using pli = pair;using pii = pair;using pdd = pair; using vi = vector;using vd = vector;using vl = vector;using vs = vector;using vb = vector; using vpii = vector;using vpli = vector;using vpll = vector;using vpil = vector; using vvi = vector>;using vvl = vector>;using vvs = vector>;using vvb = vector>; using vvpii = vector>;using vvpli = vector>;using vvpll = vector;using vvpil = vector; using mint = modint998244353; //using mint = modint1000000007; //using mint = dynamic_modint<0>; using vm = vector; using vvm = vector>; vector dx={1,0,-1,0,1,1,-1,-1},dy={0,1,0,-1,1,-1,1,-1}; ll gcd(ll a, ll b) { return a?gcd(b%a,a):b;} ll lcm(ll a, ll b) { return a/gcd(a,b)*b;} #define yes {cout <<"Yes"<=2 && y==_e[x][0]){ swap(_e[x][0], _e[x][1]); }else{ continue; } } _depth[y] = _depth[x] + 1; _par[y] = x; _dfs_sz(y); _size[x] += _size[y]; if (_size[y] > _size[_e[x][0]]) swap(y, _e[x][0]); } } void _dfs_hld(int x) { down[x] = _id++; for (int& y : _e[x]) { if (y == _par[x]) continue; _nxt[y] = (y == _e[x][0]) ? _nxt[x] : y; _dfs_hld(y); } _up[x] = _id; } // [u, v) vpii _ascend(int a, int b) const { vpii res; while (_nxt[a]!=_nxt[b]){ res.emplace_back(down[a], down[_nxt[a]]); a = _par[_nxt[a]]; } if (a != b) res.emplace_back(down[a], down[b] + 1); return res; } // (u, v] vpii _descend(int a, int b) const { if (a == b) return {}; if (_nxt[a] == _nxt[b]) return {{down[a] + 1, down[b]}}; vpii res = _descend(a, _par[_nxt[b]]); res.emplace_back(down[_nxt[b]], down[b]); return res; } public: template void path_query(int u, int v, bool vertex, const F &f) { int l = lca(u, v); for (auto &&[a, b] : _ascend(u, l)){ int s = a + 1, t = b; s > t ? f(t, s) : f(s, t); } if (vertex) f(down[l], down[l] + 1); for (auto &&[a, b] : _descend(l, v)){ int s = a, t = b + 1; s > t ? f(t, s) : f(s, t); } } template void subtree_query(int u, bool vertex, const F &f){ f(down[u] + int(!vertex), _up[u]); } int lca(int a, int b){ while (_nxt[a] != _nxt[b]){ if (down[a] < down[b]) swap(a, b); a = _par[_nxt[a]]; } return _depth[a] < _depth[b] ? a : b; } int dist(int a, int b) { return _depth[a] + _depth[b] - _depth[lca(a, b)] * 2; } }; // HeavyLightDecomposition // [remark] // HLD分解。木をオイラーツアーで列化し効率的に分解する。 // クエリを適用したい列データ構造(セグ木など)は本クラスとは別に持ち、ラムダ式などを介して作用させる。 // 頂点・辺の双方に対応している。辺に適用する場合は辺を子側頂点に連動させると考えやすくなる。 // // [interface] // HeavyLightDecomposition(const vvi& _e, int root = 0) : eは木の隣接頂点リスト,rootは根 // path_query(int u, int v, bool vertex, const F &f) : パス[u,v]にクエリfを適用させる。vertexは頂点に対するクエリかどうか。 // void subtree_query(int u, bool vertex, const F &f) : 頂点uの部分木にクエリfを適用させる。 // int lca(a,b) : a,bのlca // int dist(int a, int b) : パス[a,b]の長さ void solve(){ int n,q; cin>>n>>q; vl a(n); vl sum(n); rep(i,n) cin>>a[i]; vvi e(n),e_big(n); rep(i,n-1){ int a,b; cin>>a>>b; a--; b--; e[a].pb(b); e[b].pb(a); } vb flg(n); vi bigs; const int c = sqrt(n) + 1; rep(i,n){ if (sz(e[i])>=c){ flg[i] = true; bigs.pb(i); } } rep(i,n){ fore(y , e[i]){ if (!flg[y]) continue; e_big[i].pb(y); } } rep(i,n){ fore(y , e[i]){ if (flg[y]) continue; sum[i] += a[y]; } } fenwick_tree fw_sum(n+1),fw(n); HeavyLightDecomposition h(e); rep(i,n) if (!flg[i]) fw.add(h.down[i], a[i]); rep(i,n) fw_sum.add(h.down[i], sum[i]); auto IsOnPath = [&](int u, int v, int target)->bool{ if (u==target || v==target) return true; bool ok1 = false; bool ok2 = false; if (h.lca(target, u) == target) ok1 = true; else ok2 = true; if (h.lca(target, v) == target) ok1 = true; else ok2 = true; return (ok1 && ok2); }; vl ans; rep(i,q){ int t; cin>>t; if (t == 0){ int v; cin>>v; v--; ll x; cin>>x; a[v] += x; if (flg[v]){ }else{ fw.add(h.down[v], x); fore(y , e[v]){ sum[y] += x; fw_sum.add(h.down[y], x); } } }else{ int u,v; cin>>u>>v; u--; v--; ll tmp = 0; auto f = [&](int a,int b)->void{ tmp += fw_sum.sum(a,b); tmp -= fw.sum(a,b); }; h.path_query(u, v, true, f); if (!flg[u]) tmp += a[u]; if (!flg[v]) tmp += a[v]; fore(y, bigs){ bool ok = false; if (IsOnPath(u,v,y)) ok = true; int c = h.lca(u,v); if (h._par[c]==y) ok = true; if (h._par[y]!=-1 && IsOnPath(u,v,h._par[y])) ok = true; if (ok) tmp += a[y]; } ans.pb(tmp); } } outv; return; } int main(){ ios::sync_with_stdio(false); cin.tie(0); int t = 1; //cin>>t; rep(i,t){ solve(); } return 0; }