#ifndef INCLUDE_MODE #define INCLUDE_MODE // #define REACTIVE // #define USE_GETLINE #endif #ifdef INCLUDE_MAIN IN VO Solve() { CIN( int, N , L ); using U = Mod<1000000007>; IntervalAddSqrtDecomposition t{ vector( N + 1 ) }; t.Add( 0 , 1 ); FOR( i , 0 , N ){ t.IntervalAdd( i + 1 , i + L , t.Get( i ) ); } RETURN( t.Get( N ) ); } REPEAT_MAIN(1); #else // INCLUDE_MAIN #ifdef INCLUDE_SUB // COMPAREに使用。圧縮時は削除する。 ll Naive( ll N , ll M , ll K ) { ll answer = N + M + K; return answer; } // COMPAREに使用。圧縮時は削除する。 ll Answer( ll N , ll M , ll K ) { // START_WATCH; ll answer = N + M + K; // // TLに準じる乱択や全探索。デフォルトの猶予は100.0[ms]。 // CEXPR( double , TL , 2000.0 ); // while( CHECK_WATCH( TL ) ){ // } return answer; } // 圧縮時は中身だけ削除する。 IN VO Experiment() { // CEXPR( int , bound , 10 ); // FOREQ( N , 0 , bound ){ // FOREQ( M , 0 , bound ){ // FOREQ( K , 0 , bound ){ // COUT( N , M , K , ":" , Naive( N , M , K ) ); // } // } // // cout << Naive( N ) << ",\n"[N==bound]; // } } // 圧縮時は中身だけ削除する。 IN VO SmallTest() { // CEXPR( int , bound , 10 ); // FOREQ( N , 0 , bound ){ // FOREQ( M , 0 , bound ){ // FOREQ( K , 0 , bound ){ // COMPARE( N , M , K ); // } // } // } } // 圧縮時は中身だけ削除する。 IN VO RandomTest() { // CEXPR( int , bound_N , 1e5 ); CIN_ASSERT( N , 1 , bound_N ); // CEXPR( ll , bound_M , 1e18 ); CIN_ASSERT( M , 1 , bound_M ); // CEXPR( ll , bound_K , 1e9 ); CIN_ASSERT( K , 1 , bound_K ); // COMPARE( N , M , N ); } #define INCLUDE_MAIN #include __FILE__ #else // INCLUDE_SUB #ifdef INCLUDE_LIBRARY /* C-x 3 C-x o C-x C-fによるファイル操作用 BFS (5KB) c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/compress.txt CoordinateCompress (3KB) c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/CoordinateCompress/compress.txt DFSOnTree (11KB) c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepthFirstSearch/Tree/a.hpp Divisor (4KB) c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txt IntervalAddBIT (9KB) c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/IntervalAdd/compress.txt Polynomial (21KB) c:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txt UnionFind (3KB) c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/UnionFindForest/compress.txt */ // VVV 常設でないライブラリは以下に挿入する。 TE CL VirtualRSet:VI PU UnderlyingSet{PU:VI U Action(CO R& r,U u)= 0;IN U PW(U u,CO R& r);IN U ScalarProduct(CO R& r,U u);};TE CL RegularRSet:VI PU VirtualRSet,PU MAGMA{PU:IN RegularRSet(MAGMA magma);IN U Action(CO U& r,U u);};TE RegularRSet(MAGMA magma)-> RegularRSet,MAGMA>;TE CL AbstractRSet:VI PU VirtualRSet{PU:O_U m_o_U;IN AbstractRSet(CO R& dummy0,CO U& dummy1,O_U o_U);IN U Action(CO R& r,U u);};TE CL AbstractModule:PU AbstractRSet,PU GROUP{PU:IN AbstractModule(CO R& dummy,O_U o_U,GROUP M);};TE AbstractModule(CO R& dummy,O_U o_U,GROUP M)-> AbstractModule,O_U,GROUP>;TE CL Module:VI PU VirtualRSet,PU AdditiveGroup{PU:IN U Action(CO R& r,U u);}; TE IN RegularRSet::RegularRSet(MAGMA magma):MAGMA(MO(magma)){}TE IN AbstractRSet::AbstractRSet(CO R& dummy0,CO U& dummy1,O_U o_U):m_o_U(MO(o_U)){ST_AS(is_invocable_r_v);}TE IN AbstractModule::AbstractModule(CO R& dummy,O_U o_U,GROUP M):AbstractRSet(dummy,M.One(),MO(o_U)),GROUP(MO(M)){ST_AS(is_same_v>);}TE IN U RegularRSet::Action(CO U& r,U u){RE TH->Product(r,MO(u));}TE IN U AbstractRSet::Action(CO R& r,U u){RE m_o_U(r,MO(u));}TE IN U Module::Action(CO R& r,U u){RE MO(u *= r);}TE IN U VirtualRSet::PW(U u,CO R& r){RE Action(r,MO(u));}TE IN U VirtualRSet::ScalarProduct(CO R& r,U u){RE Action(r,MO(u));} IN CE int Sqrt(CRI N)NE{if(N <= 1){RE 1;}int left = 0;int right = N;WH(left + 1 < right){int m =(left + right)/ 2;(m <=(N - 1)/ m?left:right)= m;}RE right;} #define SFINAE_FOR_SD_S enable_if_t>* TE CL AbstractSqrtDecomposition{PU:ABELIAN_GROUP m_M;int m_N;int m_N_sqrt;int m_N_d;int m_N_m;VE m_a;VE m_b;IN AbstractSqrtDecomposition(ABELIAN_GROUP M,CRI N);IN AbstractSqrtDecomposition(ABELIAN_GROUP M,CRI N,CRI N_sqrt);IN AbstractSqrtDecomposition(ABELIAN_GROUP M,VE a);IN AbstractSqrtDecomposition(ABELIAN_GROUP M,VE a,CRI N_sqrt);TE IN VO Initialise(Args&&... args);IN VO Set(CRI i,CO U& u);IN VO Add(CRI i,CO U& u);IN CO U& OP[](CRI i)CO;IN CO U& Get(CRI i)CO;IN U IntervalSum(CRI i_start,CRI i_final);TE IN int Search(CRI i_start,CO F& f);IN int Search(CRI i_start,CO U& u);VO COruct();TE int Search_Body(CRI i_start,CO F& f,U sum_temp);};TE AbstractSqrtDecomposition(ABELIAN_GROUP M,Args&&...args)-> AbstractSqrtDecomposition,ABELIAN_GROUP>;TE CL SqrtDecomposition:PU AbstractSqrtDecomposition>{PU:TE IN SqrtDecomposition(Args&&... args);};TE SqrtDecomposition(VE a,Args&&...args)-> SqrtDecomposition; TE IN AbstractSqrtDecomposition::AbstractSqrtDecomposition(ABELIAN_GROUP M,CRI N):AbstractSqrtDecomposition(MO(M),N,Sqrt(N)){}TE IN AbstractSqrtDecomposition::AbstractSqrtDecomposition(ABELIAN_GROUP M,CRI N,CRI N_sqrt):m_M(MO(M)),m_N(N),m_N_sqrt(N_sqrt),m_N_d((m_N + m_N_sqrt - 1)/ m_N_sqrt),m_N_m(m_N_d * m_N_sqrt),m_a(m_N_m,m_M.Zero()),m_b(m_N_d,m_M.Zero()){ST_AS(! is_same_v && is_same_v>);}TE IN AbstractSqrtDecomposition::AbstractSqrtDecomposition(ABELIAN_GROUP M,VE a):m_M(MO(M)),m_N(a.SZ()),m_N_sqrt(Sqrt(m_N)),m_N_d((m_N + m_N_sqrt - 1)/ m_N_sqrt),m_N_m(m_N_d * m_N_sqrt),m_a(MO(a)),m_b(m_N_d,m_M.Zero()){COruct();}TE IN AbstractSqrtDecomposition::AbstractSqrtDecomposition(ABELIAN_GROUP M,VE a,CRI N_sqrt):m_M(MO(M)),m_N(a.SZ()),m_N_sqrt(N_sqrt),m_N_d((m_N + m_N_sqrt - 1)/ m_N_sqrt),m_N_m(m_N_d * m_N_sqrt),m_a(MO(a)),m_b(m_N_d,m_M.Zero()){COruct();}TE IN VO AbstractSqrtDecomposition::COruct(){ST_AS(! is_same_v && is_same_v>);m_a.reSZ(m_N_m);int i_min = 0;int i_ulim = m_N_sqrt;for(int d = 0;d < m_N_d;d++){U& m_bd = m_b[d];for(int i = i_min;i < i_ulim;i++){m_bd = m_M.Sum(MO(m_bd),m_a[i]);}i_min = i_ulim;i_ulim += m_N_sqrt;}}TE TE IN SqrtDecomposition::SqrtDecomposition(Args&&... args):AbstractSqrtDecomposition>(AdditiveGroup(),forward(args)...){}TE TE IN VO AbstractSqrtDecomposition::Initialise(Args&&...args){AbstractSqrtDecomposition temp{m_M,forward(args)...};m_N = temp.m_N;m_N_sqrt = temp.m_N_sqrt;m_N_d = temp.m_N_d;m_N_m = temp.m_N_m;m_a = MO(temp.m_a);m_b = MO(temp.m_b);}TE IN VO AbstractSqrtDecomposition::Set(CRI i,CO U& u){U& m_ai = m_a[i];U& m_bd = m_b[i / m_N_sqrt];m_bd = m_M.Sum(MO(m_bd),m_M.Sum(m_M.Inverse(m_ai),u));m_ai = u;}TE IN VO AbstractSqrtDecomposition::Add(CRI i,CO U& u){U& m_ai = m_a[i];U& m_bd = m_b[i / m_N_sqrt];m_bd = m_M.Sum(MO(m_bd),u);m_ai = m_M.Sum(MO(m_ai),u);}TE IN CO U& AbstractSqrtDecomposition::OP[](CRI i)CO{AS(0 <= i && i < m_N);RE m_a[i];}TE IN CO U& AbstractSqrtDecomposition::Get(CRI i)CO{RE OP[](i);}TE IN U AbstractSqrtDecomposition::IntervalSum(CRI i_start,CRI i_final){CO int i_min = max(i_start,0);CO int i_ulim = min(i_final + 1,m_N);CO int d_0 =(i_min + m_N_sqrt - 1)/ m_N_sqrt;CO int d_1 = max(d_0,i_ulim / m_N_sqrt);CO int i_0 = min(d_0 * m_N_sqrt,i_ulim);CO int i_1 = max(i_0,d_1 * m_N_sqrt);U AN = m_M.Zero();for(int i = i_min;i < i_0;i++){AN = m_M.Sum(MO(AN),m_a[i]);}for(int d = d_0;d < d_1;d++){AN = m_M.Sum(MO(AN),m_b[d]);}for(int i = i_1;i < i_ulim;i++){AN = m_M.Sum(MO(AN),m_a[i]);}RE AN;}TE TE IN int AbstractSqrtDecomposition::Search(CRI i_start,CO F& f){RE Search_Body(i_start,f,m_M.Zero());}TE IN int AbstractSqrtDecomposition::Search(CRI i_start,CO U& u){RE Search(i_start,[&](CO U& sum,CRI){RE !(u < sum);});}TE TE int AbstractSqrtDecomposition::Search_Body(CRI i_start,CO F& f,U sum_temp){CO int i_min = max(i_start,0);CO int d_0 =(i_min + m_N_sqrt - 1)/ m_N_sqrt;CO int i_0 = min(d_0 * m_N_sqrt,m_N);for(int i = i_min;i < i_0;i++){sum_temp = m_M.Sum(MO(sum_temp),m_a[i]);if(f(sum_temp,i)){RE i;}}for(int d = d_0;d < m_N_d;d++){U sum_next = m_M.Sum(sum_temp,m_b[d]);if(f(sum_next,min((d + 1)* m_N_sqrt,m_N)- 1)){RE Search_Body(d * m_N_sqrt,f,sum_temp);}sum_temp = MO(sum_next);}RE -1;} // 入力の範囲内で要件 // (1) MがUのZ加群構造である。 // を満たす場合にのみサポート。 // M.Zero()による初期化O(N) // 配列による初期化O(N) // 一点取得O(1) // M.Sum()に関する区間和取得O(N^{1/2}) // 一点代入O(1)(可換群構造を使う) // M.Sum()による一点加算O(1)(可換性を使う) // M.Sum()による区間加算O(N^{1/2})(N加群構造を使う) template class IntervalAddAbstractSqrtDecomposition : public AbstractSqrtDecomposition { protected: vector m_lazy_addition; public: template inline IntervalAddAbstractSqrtDecomposition( Z_MODULE M , Args&&... args ); template inline void Initialise( Args&&... args ); inline void Set( const int& i , const U& u ); inline void IntervalAdd( const int& i_start , const int& i_final , const U& u ); // 参照返しでないことに注意 inline U operator[]( const int& i ); inline U Get( const int& i ); inline U IntervalSum( const int& i_start , const int& i_final ); template inline int Search( const int& i_start , const F& f ) = delete; inline int Search( const int& i_start , const U& u ) = delete; }; template IntervalAddAbstractSqrtDecomposition( Z_MODULE M , Args&&... args ) -> IntervalAddAbstractSqrtDecomposition,Z_MODULE>; template class IntervalAddSqrtDecomposition : public IntervalAddAbstractSqrtDecomposition> { public: template inline IntervalAddSqrtDecomposition( Args&&... args ); }; template IntervalAddSqrtDecomposition( vector a , Args&&...args ) -> IntervalAddSqrtDecomposition; template template inline IntervalAddAbstractSqrtDecomposition::IntervalAddAbstractSqrtDecomposition( Z_MODULE M , Args&&... args ) : AbstractSqrtDecomposition( move( M ) , forward( args )... ) , m_lazy_addition( this->m_N_d , this->m_M.Zero() ) {} template template inline IntervalAddSqrtDecomposition::IntervalAddSqrtDecomposition( Args&&... args ) : IntervalAddAbstractSqrtDecomposition>( Module() , args... ) {} template template inline void IntervalAddAbstractSqrtDecomposition::Initialise( Args&&... args ) { *this = IntervalAddAbstractSqrtDecomposition( move( this->m_M ) , forward( args )... ); } template inline void IntervalAddAbstractSqrtDecomposition::Set( const int& i , const U& u ) { const int d = i / this->m_N_sqrt; this->m_b[d] = this->m_M.Sum( move( this->m_b[d] ) , this->m_M.Sum( this->m_M.Inverse( this->m_a[i] ) , u ) ); this->m_a[i] = this->m_M.Sum( this->m_M.Inverse( m_lazy_addition[d] ) , u ); } template inline void IntervalAddAbstractSqrtDecomposition::IntervalAdd( const int& i_start , const int& i_final , const U& u ) { if( u != this->m_M.Zero() ){ const int i_min = max( i_start , 0 ); const int i_ulim = min( i_final + 1 , this->m_N ); const int d_0 = ( i_min + this->m_N_sqrt - 1 ) / this->m_N_sqrt; const int d_1 = max( d_0 , i_ulim / this->m_N_sqrt ); const int i_0 = min( d_0 * this->m_N_sqrt , i_ulim ); const int i_1 = max( i_0 , d_1 * this->m_N_sqrt ); for( int i = i_min ; i < i_0 ; i++ ){ this->Add( i , u ); } for( int d = d_0 ; d < d_1 ; d++ ){ U& m_lazy_addition_d = m_lazy_addition[d]; m_lazy_addition_d = this->m_M.Sum( move( m_lazy_addition_d ) , u ); } for( int i = i_1 ; i < i_ulim ; i++ ){ this->Add( i , u ); } } return; } template inline U IntervalAddAbstractSqrtDecomposition::operator[]( const int& i ) { assert( 0 <= i && i < this->m_N ); return this->m_M.Sum( AbstractSqrtDecomposition::operator[]( i ) , m_lazy_addition[i / this->m_N_sqrt] ); } template inline U IntervalAddAbstractSqrtDecomposition::Get( const int& i ) { return operator[]( i ); } template inline U IntervalAddAbstractSqrtDecomposition::IntervalSum( const int& i_start , const int& i_final ) { const int i_min = max( i_start , 0 ); const int i_ulim = min( i_final + 1 , this->m_N ); const int d_0 = ( i_min + this->m_N_sqrt - 1 ) / this->m_N_sqrt; const int d_1 = max( d_0 , i_ulim / this->m_N_sqrt ); const int i_0 = min( d_0 * this->m_N_sqrt , i_ulim ); const int i_1 = max( i_0 , d_1 * this->m_N_sqrt ); U answer = this->m_M.Zero(); for( int d = d_0 ; d < d_1 ; d++ ){ answer = this->m_M.Sum( move( answer ) , m_lazy_addition[d] ); } answer = this->m_M.ScalarProduct( answer , d_1 - d_0 ); if( d_0 > 0 ){ answer = this->m_M.Sum( move( answer ) , this->m_M.ScalarProduct( m_lazy_addition[d_0 - 1] , i_0 - i_min ) ); } if( d_1 < this->m_N_d ){ answer = this->m_M.Sum( move( answer ) , this->m_M.ScalarProduct( m_lazy_addition[d_1] , i_ulim - i_1 ) ); } answer = this->m_M.Sum( move( answer ) , AbstractSqrtDecomposition::IntervalSum( i_start , i_final ) ); return answer; } // AAA 常設でないライブラリは以上に挿入する。 #define INCLUDE_SUB #include __FILE__ #else // INCLUDE_LIBRARY #ifdef DEBUG #define _GLIBCXX_DEBUG #define REPEAT_MAIN( BOUND ) START_MAIN; signal( SIGABRT , &AlertAbort ); AutoCheck( exec_mode , use_getline ); CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if( exec_mode == solve_mode ){ if CE( bound_test_case_num > 1 ){ CERR( "テストケースの個数を入力してください。" ); SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } } else { if( exec_mode == experiment_mode ){ Experiment(); } else if( exec_mode == small_test_mode ){ SmallTest(); } else if( exec_mode == random_test_mode ){ CERR( "ランダムテストを行う回数を指定してください。" ); SET_LL( test_case_num ); REPEAT( test_case_num ){ RandomTest(); } } RE 0; } FINISH_MAIN #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE2 ) #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX ) ); AS( ( MIN ) <= A && A <= ( MAX ) ) #define SET_ASSERT( A , MIN , MAX ) if( exec_mode == solve_mode ){ SET_LL( A ); ASSERT( A , MIN , MAX ); } else if( exec_mode == random_test_mode ){ CERR( #A , " = " , ( A = GetRand( MIN , MAX ) ) ); } else { AS( false ); } #define SOLVE_ONLY ST_AS( __FUNCTION__[0] == 'S' ) #define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl #define COUT( ... ) VariadicCout( cout << "出力: " , __VA_ARGS__ ) << endl #define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl #define COUT_A( A , N ) cout << "出力: "; OUTPUT_ARRAY( cout , A , N ) << endl #define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl #define COUT_ITR( A ) cout << "出力: "; OUTPUT_ITR( cout , A ) << endl #else #pragma GCC optimize ( "O3" ) #pragma GCC optimize ( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if CE( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 ) #define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) ) #define SET_ASSERT( A , MIN , MAX ) SET_LL( A ); ASSERT( A , MIN , MAX ) #define SOLVE_ONLY #define CERR( ... ) #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL #define CERR_A( A , N ) #define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << ENDL #define CERR_ITR( A ) #define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << ENDL #endif #ifdef REACTIVE #define ENDL endl #else #define ENDL "\n" #endif #ifdef USE_GETLINE #define SET_LL( A ) { GETLINE( A ## _str ); A = stoll( A ## _str ); } #define GETLINE_SEPARATE( SEPARATOR , ... ) SOLVE_ONLY; string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ ) #define GETLINE( ... ) SOLVE_ONLY; GETLINE_SEPARATE( '\n' , __VA_ARGS__ ) #else #define SET_LL( A ) cin >> A #define CIN( LL , ... ) SOLVE_ONLY; LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ ) #define SET_A( A , N ) SOLVE_ONLY; FOR( VARIABLE_FOR_SET_A , 0 , N ){ cin >> A[VARIABLE_FOR_SET_A]; } #define CIN_A( LL , A , N ) VE A( N ); SET_A( A , N ); #endif #include using namespace std; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define FINISH_MAIN REPEAT( test_case_num ){ if CE( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve(); CERR( "" ); } } #define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now() #define CURRENT_TIME static_cast( chrono::duration_cast( chrono::system_clock::now() - watch ).count() / 1000.0 ) #define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 ) #define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE #define SET_A_ASSERT( A , N , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A] , MIN , MAX ); } #define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX ) #define CIN_A_ASSERT( A , N , MIN , MAX ) vector A( N ); SET_A_ASSERT( A , N , MIN , MAX ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( decldecay_t( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( decldecay_t( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( decldecay_t( INITIAL ) VAR = INITIAL ; VAR + 1 > FINAL ; VAR -- ) #define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .BE() , end_ ## ARRAY = ARRAY .EN() #define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES ) #define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ) #define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?"":" "); } OS #define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.BE() , EN_FOR_OUTPUT_ITR = A.EN(); bool VARIABLE_FOR_OUTPUT_ITR = ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; WH( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR = ++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS #define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); RE #define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; COUT( "(" , #__VA_ARGS__ , ") == (" , __VA_ARGS__ , ") : Naive == " , naive , match ? "==" : "!=" , answer , "== Answer" ); if( !match ){ RE; } // 圧縮用 #define TE template #define TY typename #define US using #define ST static #define AS assert #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begin #define EN end #define SZ size #define LE length #define PW Power #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& #define VI virtual #define ST_AS static_assert #define reMO_CO remove_const #define is_COructible_v is_constructible_v #define rBE rbegin #define reSZ resize // 型のエイリアス #define decldecay_t(VAR)decay_t TE US ret_t = decltype(declval()(declval()...)); TE US inner_t = TY T::type; US uint = unsigned int; US ll = long long; US ull = unsigned long long; US ld = long double; US lld = __float128; TE US T2 = pair; TE US T3 = tuple; TE US T4 = tuple; US path = pair; // 入出力用 #define DF_OF_COUT_FOR_VE(V)TE IN basic_ostream& OP<<(basic_ostream& os,CO V& arg){auto BE = arg.BE(),EN = arg.EN();auto IT = BE;WH(IT != EN){(IT == BE?os:os << " ")<< *IT;IT++;}RE os;} TE IN basic_istream& VariadicCin(basic_istream& is){RE is;} TE IN basic_istream& VariadicCin(basic_istream& is,Arg& arg,ARGS&... args){RE VariadicCin(is >> arg,args...);} TE IN basic_istream& VariadicGetline(basic_istream& is,CO char& separator){RE is;} TE IN basic_istream& VariadicGetline(basic_istream& is,CO char& separator,Arg& arg,ARGS&... args){RE VariadicGetline(getline(is,arg,separator),separator,args...);} DF_OF_COUT_FOR_VE(VE); DF_OF_COUT_FOR_VE(LI); DF_OF_COUT_FOR_VE(set); DF_OF_COUT_FOR_VE(unordered_set); TE IN basic_ostream& OP<<(basic_ostream& os,CO pair& arg){RE os << arg.first << " " << arg.second;} TE IN basic_ostream& VariadicCout(basic_ostream& os,CO Arg& arg){RE os << arg;} TE IN basic_ostream& VariadicCout(basic_ostream& os,CO Arg1& arg1,CO Arg2& arg2,CO ARGS&... args){RE VariadicCout(os << arg1 << " ",arg2,args...);} // 算術用 TE CE T PositiveBaseRS(CO T& a,CO T& p){RE a >= 0?a % p:p - 1 -((-(a + 1))% p);} TE CE T RS(CO T& a,CO T& p){RE PositiveBaseRS(a,p < 0?-p:p);} TE CE T PositiveBaseQuotient(CO T& a,CO T& p){RE(a - PositiveBaseRS(a,p))/ p;} TE CE T Quotient(CO T& a,CO T& p){RE p < 0?PositiveBaseQuotient(-a,-p):PositiveBaseQuotient(a,p);} #define POWER( ANSWER , ARGUMENT , EXPONENT ) \ ST_AS( ! is_same::value && ! is_same::value ); \ decldecay_t( ARGUMENT ) ANSWER{ 1 }; \ { \ decldecay_t( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \ decldecay_t( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ WH( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ ll ANSWER{ 1 }; \ { \ ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( ARGUMENT ) % ( MODULO ) ) % ( MODULO ); \ ARGUMENT_FOR_SQUARE_FOR_POWER < 0 ? ARGUMENT_FOR_SQUARE_FOR_POWER += ( MODULO ) : ARGUMENT_FOR_SQUARE_FOR_POWER; \ decldecay_t( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ WH( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CE_LENGTH , MODULO ) \ ll ANSWER[CE_LENGTH]; \ ll ANSWER_INV[CE_LENGTH]; \ ll INVERSE[CE_LENGTH]; \ { \ ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \ FOREQ( i , 1 , MAX_INDEX ){ \ ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \ } \ ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ FOREQ( i , 2 , MAX_INDEX ){ \ ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % ( MODULO ) ) ) %= ( MODULO ); \ } \ } \ // 二分探索用 // EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= CO_TARGETの整数解を格納。 #define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , CO_TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \ ST_AS( ! is_same::value && ! is_same::value ); \ ll ANSWER = MINIMUM; \ { \ ll L_BS = MINIMUM; \ ll U_BS = MAXIMUM; \ ANSWER = UPDATE_ANSWER; \ ll EXPRESSION_BS; \ CO ll CO_TARGET_BS = ( CO_TARGET ); \ ll DIFFERENCE_BS; \ WH( L_BS < U_BS ){ \ DIFFERENCE_BS = ( EXPRESSION_BS = ( EXPRESSION ) ) - CO_TARGET_BS; \ CERR( "二分探索中:" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS :" , #EXPRESSION , "=" , EXPRESSION_BS , DIFFERENCE_BS > 0 ? ">" : DIFFERENCE_BS < 0 ? "<" : "=" , CO_TARGET_BS , "=" , #CO_TARGET ); \ if( DIFFERENCE_BS INEQUALITY_FOR_CHECK 0 ){ \ U_BS = UPDATE_U; \ } else { \ L_BS = UPDATE_L; \ } \ ANSWER = UPDATE_ANSWER; \ } \ if( L_BS > U_BS ){ \ CERR( "二分探索失敗:" , "L_BS =" , L_BS , ">" , U_BS , "= U_BS :" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \ CERR( "二分探索マクロにミスがある可能性があります。変更前の版に戻してください。" ); \ ANSWER = MAXIMUM + 1; \ } else { \ CERR( "二分探索終了:" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS" ); \ CERR( "二分探索が成功したかを確認するために" , #EXPRESSION , "を計算します。" ); \ CERR( "成功判定が不要な場合はこの計算を削除しても構いません。" ); \ EXPRESSION_BS = ( EXPRESSION ); \ CERR( "二分探索結果:" , #EXPRESSION , "=" , EXPRESSION_BS , ( EXPRESSION_BS > CO_TARGET_BS ? ">" : EXPRESSION_BS < CO_TARGET_BS ? "<" : "=" ) , CO_TARGET_BS ); \ if( EXPRESSION_BS DESIRED_INEQUALITY CO_TARGET_BS ){ \ CERR( "二分探索成功:" , #ANSWER , ":=" , ANSWER ); \ } else { \ CERR( "二分探索失敗:" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \ CERR( "単調でないか、単調増加性と単調減少性を逆にしてしまったか、探索範囲内に解が存在しません。" ); \ ANSWER = MAXIMUM + 1; \ } \ } \ } \ // 単調増加の時にEXPRESSION >= CO_TARGETの最小解を格納。 #define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , >= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) // 単調増加の時にEXPRESSION <= CO_TARGETの最大解を格納。 #define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , > , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) // 単調減少の時にEXPRESSION >= CO_TARGETの最大解を格納。 #define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , < , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) // 単調減少の時にEXPRESSION <= CO_TARGETの最小解を格納。 #define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , <= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) // t以下の値が存在すればその最大値のiterator、存在しなければend()を返す。 TE IN TY set::iterator MaximumLeq(set& S,CO T& t){CO auto EN = S.EN();if(S.empty()){RE EN;}auto IT = S.upper_bound(t);RE IT == EN?S.find(*(S.rBE())):IT == S.BE()?EN:--IT;} // t未満の値が存在すればその最大値のiterator、存在しなければend()を返す。 TE IN TY set::iterator MaximumLt(set& S,CO T& t){CO auto EN = S.EN();if(S.empty()){RE EN;}auto IT = S.lower_bound(t);RE IT == EN?S.find(*(S.rBE())):IT == S.BE()?EN:--IT;} // t以上の値が存在すればその最小値のiterator、存在しなければend()を返す。 TE IN TY set::iterator MinimumGeq(set& S,CO T& t){RE S.lower_bound(t);} // tより大きい値が存在すればその最小値のiterator、存在しなければend()を返す。 TE IN TY set::iterator MinimumGt(set& S,CO T& t){RE S.upper_bound(t);} // 尺取り法用 // VAR_TPAがINITからUPDATEを繰り返しCONTINUE_CONDITIONを満たす限り、ON_CONDITIONを判定して // trueならON、falseならOFFとなる。直近のONの区間を[VAR_TPA_L,VAR_TPA_R)で管理する。 #define TPA( VAR_TPA , INIT , UPDATE , CONTINUE_CONDITION , ON_CONDITION , ONON , ONOFF , OFFON , OFFOFF , FINISH ) \ { \ auto VAR_TPA = INIT; \ auto VAR_TPA ## _L = VAR_TPA; \ auto VAR_TPA ## _R = VAR_TPA; \ bool on_TPA = false; \ int state_TPA = 3; \ WH( CONTINUE_CONDITION ){ \ bool on_TPA_next = ON_CONDITION; \ state_TPA = ( ( on_TPA ? 1 : 0 ) << 1 ) | ( on_TPA_next ? 1 : 0 ); \ CERR( "尺取り中: [L,R) = [" , VAR_TPA ## _L , "," , VAR_TPA ## _R , ") ," , #VAR_TPA , "=" , VAR_TPA , "," , ( ( state_TPA >> 1 ) & 1 ) == 1 ? "on" : "off" , " ->" , ( state_TPA & 1 ) == 1 ? "on" : "off" ); \ if( state_TPA == 0 ){ \ OFFOFF; VAR_TPA ## _L = VAR_TPA ## _R = VAR_TPA; UPDATE; \ } else if( state_TPA == 1 ){ \ OFFON; VAR_TPA ## _L = VAR_TPA; UPDATE; VAR_TPA ## _R = VAR_TPA; \ } else if( state_TPA == 2 ){ \ ONOFF; VAR_TPA ## _L = VAR_TPA ## _R = VAR_TPA; UPDATE; \ } else { \ ONON; UPDATE; VAR_TPA ## _R = VAR_TPA; \ } \ on_TPA = on_TPA_next; \ } \ CERR( "尺取り終了: [L,R) = [" , VAR_TPA ## _L , "," , VAR_TPA ## _R , ") ," , #VAR_TPA , "=" , VAR_TPA ); \ FINISH; \ } \ // データ構造用 TE TY V> IN auto OP+(CO V& a0,CO V& a1)-> decldecay_t((declval>().push_back(declval()),a0)){if(a0.empty()){RE a1;}if(a1.empty()){RE a0;}AS(a0.SZ()== a1.SZ());V AN{};for(auto IT0 = a0.BE(),IT1 = a1.BE(),EN0 = a0.EN();IT0 != EN0;IT0++,IT1++){AN.push_back(*IT0 + *IT1);}RE AN;} TE IN pair OP+(CO pair& t0,CO pair& t1){RE{t0.first + t1.first,t0.second + t1.second};} TE IN tuple OP+(CO tuple& t0,CO tuple& t1){RE{get<0>(t0)+ get<0>(t1),get<1>(t0)+ get<1>(t1),get<2>(t0)+ get<2>(t1)};} TE IN tuple OP+(CO tuple& t0,CO tuple& t1){RE{get<0>(t0)+ get<0>(t1),get<1>(t0)+ get<1>(t1),get<2>(t0)+ get<2>(t1),get<3>(t0)+ get<3>(t1)};} TE IN T Addition(CO T& t0,CO T& t1){RE t0 + t1;} TE IN T Xor(CO T& t0,CO T& t1){RE t0 ^ t1;} TE IN T MU(CO T& t0,CO T& t1){RE t0 * t1;} TE IN CO T& Zero(){ST CO T z{};RE z;} TE IN CO T& One(){ST CO T o = 1;RE o;}TE IN T AdditionInv(CO T& t){RE -t;} TE IN T Id(CO T& v){RE v;} TE IN T Min(CO T& a,CO T& b){RE a < b?a:b;} TE IN T Max(CO T& a,CO T& b){RE a < b?b:a;} // グラフ用 TE TY V> IN auto Get(CO V& a){RE[&](CRI i = 0){RE a[i];};} TE IN VE id(CRI SZ){VE AN(SZ);FOR(i,0,SZ){AN[i]= i;}RE AN;} // グリッド問題用 int H,W,H_minus,W_minus,HW; VE wall_str;VE > non_wall; char walkable = '.',unwalkable = '#'; IN T2 EnumHW(CRI v){RE{v / W,v % W};} IN int EnumHW_inv(CO T2& ij){auto&[i,j]= ij;RE i * W + j;} CO string direction[4]={"U","R","D","L"}; IN int DirectionNumberOnGrid(CRI i,CRI j,CRI k,CRI h){RE ik?0:jh?3:(AS(false),-1);} IN int DirectionNumberOnGrid(CRI v,CRI w){auto[i,j]=EnumHW(v);auto[k,h]=EnumHW(w);RE DirectionNumberOnGrid(i,j,k,h);} IN int ReverseDirectionNumberOnGrid(CRI n){AS(0<=n&&n<4);RE(n+2)%4;} IN VE EdgeOnGrid(CRI v){VEAN{};auto[i,j]=EnumHW(v);if(i>0&&wall_str[i-1][j]==walkable){AN.push_back(EnumHW_inv({i-1,j}));}if(i+10&&wall_str[i][j-1]==walkable){AN.push_back(EnumHW_inv({i,j-1}));}if(j+1 WeightedEdgeOnGrid(CRI v){VEAN{};auto[i,j]=EnumHW(v);if(i>0&&wall_str[i-1][j]==walkable){AN.push_back({EnumHW_inv({i-1,j}),1});}if(i+10&&wall_str[i][j-1]==walkable){AN.push_back({EnumHW_inv({i,j-1}),1});}if(j+1& S){if(S.empty()){S.reSZ(H);}cin>>S[i];AS(int(S[i].SZ())==W);} IN VO SetWallOnGrid(CRI i,VE>& b){if(b.empty()){b.reSZ(H,VE(W));}auto&S_i=wall_str[i];auto&b_i=b[i];FOR(j,0,W){b_i[j]=S_i[j]==walkable?false:(AS(S_i[j]==unwalkable),true);}} // デバッグ用 #ifdef DEBUG IN VO AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); } VO AutoCheck( int& exec_mode , CO bool& use_getline ); IN VO Solve(); IN VO Experiment(); IN VO SmallTest(); IN VO RandomTest(); ll GetRand( CRL Rand_min , CRL Rand_max ); IN VO BreakPoint( CRI LINE ) {} int exec_mode; CEXPR( int , solve_mode , 0 ); CEXPR( int , sample_debug_mode , 1 ); CEXPR( int , submission_debug_mode , 2 ); CEXPR( int , library_search_mode , 3 ); CEXPR( int , experiment_mode , 4 ); CEXPR( int , small_test_mode , 5 ); CEXPR( int , random_test_mode , 6 ); #ifdef USE_GETLINE CEXPR( bool , use_getline , true ); #else CEXPR( bool , use_getline , false ); #endif #else ll GetRand( CRL Rand_min , CRL Rand_max ) { ll answer = time( NULL ); RE answer * rand() % ( Rand_max + 1 - Rand_min ) + Rand_min; } #endif // VVV 常設ライブラリは以下に挿入する。 // Map (1KB) // c:/Users/user/Documents/Programming/Mathematics/Function/Map/compress.txt CL is_ordered{PU:is_ordered()= delete;TE ST CE auto Check(CO T& t)-> decltype(t < t,true_type());ST CE false_type Check(...);TE ST CE CO bool value = is_same_v< decltype(Check(declval())),true_type >;}; TE US Map = conditional_t>,unordered_map,conditional_t,map,VO>>; // Algebra (4KB) // c:/Users/user/Documents/Programming/Mathematics/Algebra/compress.txt #define DC_OF_CPOINT(POINT)IN CO U& POINT()CO NE #define DC_OF_POINT(POINT)IN U& POINT()NE #define DF_OF_CPOINT(POINT)TE IN CO U& VirtualPointedSet::POINT()CO NE{RE Point();} #define DF_OF_POINT(POINT)TE IN U& VirtualPointedSet::POINT()NE{RE Point();} TE CL UnderlyingSet{PU:US type = U;};TE CL VirtualPointedSet:VI PU UnderlyingSet{PU:VI CO U& Point()CO NE = 0;VI U& Point()NE = 0;DC_OF_CPOINT(Unit);DC_OF_CPOINT(Zero);DC_OF_CPOINT(One);DC_OF_CPOINT(Infty);DC_OF_POINT(init);DC_OF_POINT(root);};TE CL PointedSet:VI PU VirtualPointedSet{PU:U m_b_U;IN PointedSet(U b_u = U());IN CO U& Point()CO NE;IN U& Point()NE;};TE CL VirtualNSet:VI PU UnderlyingSet{PU:VI U Transfer(CO U& u)= 0;IN U Inverse(CO U& u);};TE CL AbstractNSet:VI PU VirtualNSet{PU:F_U m_f_U;IN AbstractNSet(F_U f_U);IN U Transfer(CO U& u);};TE CL VirtualMagma:VI PU UnderlyingSet{PU:VI U Product(U u0,CO U& u1)= 0;IN U Sum(U u0,CO U& u1);};TE CL AdditiveMagma:VI PU VirtualMagma{PU:IN U Product(U u0,CO U& u1);};TE CL MultiplicativeMagma:VI PU VirtualMagma{PU:IN U Product(U u0,CO U& u1);};TE CL AbstractMagma:VI PU VirtualMagma{PU:M_U m_m_U;IN AbstractMagma(M_U m_U);IN U Product(U u0,CO U& u1);}; TE IN PointedSet::PointedSet(U b_U):m_b_U(MO(b_U)){}TE IN CO U& PointedSet::Point()CO NE{RE m_b_U;}TE IN U& PointedSet::Point()NE{RE m_b_U;}DF_OF_CPOINT(Unit);DF_OF_CPOINT(Zero);DF_OF_CPOINT(One);DF_OF_CPOINT(Infty);DF_OF_POINT(init);DF_OF_POINT(root);TE IN AbstractNSet::AbstractNSet(F_U f_U):m_f_U(MO(f_U)){ST_AS(is_invocable_r_v);}TE IN U AbstractNSet::Transfer(CO U& u){RE m_f_U(u);}TE IN U VirtualNSet::Inverse(CO U& u){RE Transfer(u);}TE IN AbstractMagma::AbstractMagma(M_U m_U):m_m_U(MO(m_U)){ST_AS(is_invocable_r_v);}TE IN U AdditiveMagma::Product(U u0,CO U& u1){RE MO(u0 += u1);}TE IN U MultiplicativeMagma::Product(U u0,CO U& u1){RE MO(u0 *= u1);}TE IN U AbstractMagma::Product(U u0,CO U& u1){RE m_m_U(MO(u0),u1);}TE IN U VirtualMagma::Sum(U u0,CO U& u1){RE Product(MO(u0),u1);}TE CL VirtualMonoid:VI PU VirtualMagma,VI PU VirtualPointedSet{};TE CL AdditiveMonoid:VI PU VirtualMonoid,PU AdditiveMagma,PU PointedSet{};TE CL MultiplicativeMonoid:VI PU VirtualMonoid,PU MultiplicativeMagma,PU PointedSet{PU:IN MultiplicativeMonoid(U e_U);};TE CL AbstractMonoid:VI PU VirtualMonoid,PU AbstractMagma,PU PointedSet{PU:IN AbstractMonoid(M_U m_U,U e_U);};TE IN MultiplicativeMonoid::MultiplicativeMonoid(U e_U):PointedSet(MO(e_U)){}TE IN AbstractMonoid::AbstractMonoid(M_U m_U,U e_U):AbstractMagma(MO(m_U)),PointedSet(MO(e_U)){}TE CL VirtualGroup:VI PU VirtualMonoid,VI PU VirtualPointedSet,VI PU VirtualNSet{};TE CL AdditiveGroup:VI PU VirtualGroup,PU AdditiveMonoid{PU:IN U Transfer(CO U& u);};TE CL AbstractGroup:VI PU VirtualGroup,PU AbstractMonoid,PU AbstractNSet{PU:IN AbstractGroup(M_U m_U,U e_U,I_U i_U);};TE IN AbstractGroup::AbstractGroup(M_U m_U,U e_U,I_U i_U):AbstractMonoid(MO(m_U),MO(e_U)),AbstractNSet(MO(i_U)){}TE IN U AdditiveGroup::Transfer(CO U& u){RE -u;} // Graph (5KB) // c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/compress.txt TE CL VirtualGraph:VI PU UnderlyingSet{PU:VI R1 Enumeration(CRI i)= 0;IN R2 Enumeration_inv(CO T& t);TE IN R2 Enumeration_inv(CO PATH& p);IN VO Reset();VI CRI SZ()CO NE = 0;VI E& edge()NE = 0;VI ret_t Edge(CO T& t)= 0;VI IN R2 Enumeration_inv_Body(CO T& t)= 0;};TE CL EdgeImplimentation:VI PU VirtualGraph{PU:int m_SZ;E m_edge;IN EdgeImplimentation(CRI SZ,E edge);IN CRI SZ()CO NE;IN E& edge()NE;IN ret_t Edge(CO T& t);};TE CL Graph:PU EdgeImplimentation{PU:IN Graph(CRI SZ,E edge);IN CRI Enumeration(CRI i);TE IN Graph GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CRI t);};TE CL EnumerationGraph:PU EdgeImplimentation,ret_t,E>{PU:Enum_T m_enum_T;Enum_T_inv m_enum_T_inv;IN EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge);IN ret_t Enumeration(CRI i);TE IN EnumerationGraph GetGraph(F edge)CO;IN ret_t Enumeration_inv_Body(CO T& t);};TE EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge)-> EnumerationGraph()(0)),Enum_T,Enum_T_inv,E>;TE CL MemorisationGraph:PU EdgeImplimentation{PU:int m_LE;VE m_memory;Map m_memory_inv;IN MemorisationGraph(CRI SZ,E edge);IN T Enumeration(CRI i);IN VO Reset();TE IN MemorisationGraph GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CO T& t);};TE MemorisationGraph(CRI SZ,E edge)-> MemorisationGraph()().back()),E>;TE MemorisationGraph(CRI SZ,E edge)-> MemorisationGraph(declval()().back())),E>; TE IN EdgeImplimentation::EdgeImplimentation(CRI SZ,E edge):m_SZ(SZ),m_edge(MO(edge)){ST_AS(is_COructible_v && is_COructible_v && is_invocable_v);}TE IN Graph::Graph(CRI SZ,E edge):EdgeImplimentation(SZ,MO(edge)){}TE IN EnumerationGraph::EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge):EdgeImplimentation,ret_t,E>(SZ,MO(edge)),m_enum_T(MO(enum_T)),m_enum_T_inv(MO(enum_T_inv)){}TE IN MemorisationGraph::MemorisationGraph(CRI SZ,E edge):EdgeImplimentation(SZ,MO(edge)),m_LE(),m_memory(),m_memory_inv(){ST_AS(is_invocable_v && is_invocable_v);}TE IN CRI Graph::Enumeration(CRI i){RE i;}TE IN ret_t EnumerationGraph::Enumeration(CRI i){RE m_enum_T(i);}TE IN T MemorisationGraph::Enumeration(CRI i){AS(0 <= i && i < m_LE);RE m_memory[i];}TE IN R2 VirtualGraph::Enumeration_inv(CO T& t){RE Enumeration_inv_Body(t);}TE TE IN R2 VirtualGraph::Enumeration_inv(CO PATH& p){RE Enumeration_inv_Body(get<0>(p));}TE IN CRI Graph::Enumeration_inv_Body(CRI i){RE i;}TE IN ret_t EnumerationGraph::Enumeration_inv_Body(CO T& t){RE m_enum_T_inv(t);}TE IN CRI MemorisationGraph::Enumeration_inv_Body(CO T& t){if(m_memory_inv.count(t)== 0){AS(m_LE < TH->SZ());m_memory.push_back(t);RE m_memory_inv[t]= m_LE++;}RE m_memory_inv[t];}TE VO VirtualGraph::Reset(){}TE IN VO MemorisationGraph::Reset(){m_LE = 0;m_memory.clear();m_memory_inv.clear();}TE IN CRI EdgeImplimentation::SZ()CO NE{RE m_SZ;}TE IN E& EdgeImplimentation::edge()NE{RE m_edge;}TE IN ret_t EdgeImplimentation::Edge(CO T& t){RE m_edge(t);}TE TE IN Graph Graph::GetGraph(F edge)CO{RE Graph(TH->SZ(),MO(edge));}TE TE IN EnumerationGraph EnumerationGraph::GetGraph(F edge)CO{RE EnumerationGraph(TH->SZ(),m_enum_T,m_enum_T_inv,MO(edge));}TE TE IN MemorisationGraph MemorisationGraph::GetGraph(F edge)CO{RE MemorisationGraph(TH->SZ(),MO(edge));} // ConstexprModulo (7KB) // c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Mod/ConstexprModulo/compress.txt #define RP Represent #define DeRP Derepresent CEXPR(uint,P,998244353); TE CE INT RS(INT n)NE{RE MO(n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n < INT(M)?n:n %= M);}TE CE INT& RSP(INT& n)NE{CE CO uint trunc =(1 << 23)- 1;INT n_u = n >> 23;n &= trunc;INT n_uq =(n_u / 7)/ 17;n_u -= n_uq * 119;n += n_u << 23;RE n < n_uq?n += P - n_uq:n -= n_uq;} #define DC_OF_CM_FOR_MOD(OPR)CE bool OP OPR(CO Mod& n)CO NE #define DC_OF_AR_FOR_MOD(OPR,EX)CE Mod OP OPR(Mod n)CO EX; #define DF_OF_CM_FOR_MOD(OPR)TE CE bool Mod::OP OPR(CO Mod& n)CO NE{RE m_n OPR n.m_n;} #define DF_OF_AR_FOR_MOD(OPR,EX,LEFT,OPR2)TE CE Mod Mod::OP OPR(Mod n)CO EX{RE MO(LEFT OPR2 ## = *TH);}TE CE Mod OP OPR(T n0,CO Mod& n1)EX{RE MO(Mod(MO(n0))OPR ## = n1);} TE CL Mod{PU:uint m_n;CE Mod()NE;CE Mod(CO Mod& n)NE;CE Mod(Mod&& n)NE;TE CE Mod(T n)NE;CE Mod& OP=(Mod n)NE;CE Mod& OP+=(CO Mod& n)NE;CE Mod& OP-=(CO Mod& n)NE;CE Mod& OP*=(CO Mod& n)NE;IN Mod& OP/=(Mod n);TE CE Mod& OP<<=(INT n);TE CE Mod& OP>>=(INT n);CE Mod& OP++()NE;CE Mod OP++(int)NE;CE Mod& OP--()NE;CE Mod OP--(int)NE;DC_OF_CM_FOR_MOD(==);DC_OF_CM_FOR_MOD(!=);DC_OF_CM_FOR_MOD(<);DC_OF_CM_FOR_MOD(<=);DC_OF_CM_FOR_MOD(>);DC_OF_CM_FOR_MOD(>=);DC_OF_AR_FOR_MOD(+,NE);DC_OF_AR_FOR_MOD(-,NE);DC_OF_AR_FOR_MOD(*,NE);DC_OF_AR_FOR_MOD(/,);TE CE Mod OP^(INT EX)CO;TE CE Mod OP<<(INT n)CO;TE CE Mod OP>>(INT n)CO;CE Mod OP-()CO NE;CE Mod& SignInvert()NE;IN Mod& Invert();TE CE Mod& PW(INT EX);CE VO swap(Mod& n)NE;CE CO uint& RP()CO NE;ST CE Mod DeRP(CO uint& n)NE;ST IN CO Mod& Inverse(CO uint& n);ST IN CO Mod& Factorial(CO uint& n);ST IN CO Mod& FactorialInverse(CO uint& n);ST IN Mod Combination(CO uint& n,CO uint& i);ST IN CO Mod& zero()NE;ST IN CO Mod& one()NE;TE CE Mod& PositivePW(INT EX)NE;TE CE Mod& NonNegativePW(INT EX)NE;TE CE Mod& Ref(T&& n)NE;ST CE uint& Normalise(uint& n)NE;}; US MP = Mod

; TE CL Mod;TE CL COantsForMod{PU:COantsForMod()= delete;ST CE CO uint g_memory_bound = #ifdef DEBUG 1e3; #else 1e6; #endif ST CE CO uint g_memory_LE = M < g_memory_bound?M:g_memory_bound;ST CE uint g_M_minus = M - 1;ST CE uint g_M_minus_2 = M - 2;ST CE uint g_M_minus_2_neg = 2 - M;}; TE CE Mod::Mod()NE:m_n(){}TE CE Mod::Mod(CO Mod& n)NE:m_n(n.m_n){}TE CE Mod::Mod(Mod&& n)NE:m_n(MO(n.m_n)){}TE TE CE Mod::Mod(T n)NE:m_n(RS(MO(n))){ST_AS(is_COructible_v >);}TE CE Mod& Mod::OP=(Mod n)NE{RE Ref(m_n = MO(n.m_n));}TE CE Mod& Mod::OP+=(CO Mod& n)NE{RE Ref(Normalise(m_n += n.m_n));}TE CE Mod& Mod::OP-=(CO Mod& n)NE{RE Ref(m_n < n.m_n?(m_n += M)-= n.m_n:m_n -= n.m_n);}TE CE Mod& Mod::OP*=(CO Mod& n)NE{RE Ref(m_n = RS(ull(m_n)* n.m_n));}TE <> CE MP& MP::OP*=(CO MP& n)NE{ull m_n_copy = m_n;RE Ref(m_n = MO((m_n_copy *= n.m_n)< P?m_n_copy:RSP(m_n_copy)));}TE IN Mod& Mod::OP/=(Mod n){RE OP*=(n.Invert());}TE TE CE Mod& Mod::OP<<=(INT n){AS(n >= 0);RE *TH *= Mod(2).NonNegativePW(MO(n));}TE TE CE Mod& Mod::OP>>=(INT n){AS(n >=0);WH(n-- > 0){((m_n & 1)== 0?m_n:m_n += M)>>= 1;}RE *TH;}TE CE Mod& Mod::OP++()NE{RE Ref(m_n < COantsForMod::g_M_minus?++m_n:m_n = 0);}TE CE Mod Mod::OP++(int)NE{Mod n{*TH};OP++();RE n;}TE CE Mod& Mod::OP--()NE{RE Ref(m_n == 0?m_n = COantsForMod::g_M_minus:--m_n);}TE CE Mod Mod::OP--(int)NE{Mod n{*TH};OP--();RE n;}DF_OF_CM_FOR_MOD(==);DF_OF_CM_FOR_MOD(!=);DF_OF_CM_FOR_MOD(>);DF_OF_CM_FOR_MOD(>=);DF_OF_CM_FOR_MOD(<);DF_OF_CM_FOR_MOD(<=);DF_OF_AR_FOR_MOD(+,NE,n,+);DF_OF_AR_FOR_MOD(-,NE,n.SignInvert(),+);DF_OF_AR_FOR_MOD(*,NE,n,*);DF_OF_AR_FOR_MOD(/,,n.Invert(),*);TE TE CE Mod Mod::OP^(INT EX)CO{RE MO(Mod(*TH).PW(MO(EX)));}TE TE CE Mod Mod::OP<<(INT n)CO{RE MO(Mod(*TH)<<= MO(n));}TE TE CE Mod Mod::OP>>(INT n)CO{RE MO(Mod(*TH)>>= MO(n));}TE CE Mod Mod::OP-()CO NE{RE MO(Mod(*TH).SignInvert());}TE CE Mod& Mod::SignInvert()NE{RE Ref(m_n > 0?m_n = M - m_n:m_n);}TE IN Mod& Mod::Invert(){AS(m_n != 0);uint m_n_neg;RE m_n < COantsForMod::g_memory_LE?Ref(m_n = Inverse(m_n).m_n):((m_n_neg = M - m_n)< COantsForMod::g_memory_LE)?Ref(m_n = M - Inverse(m_n_neg).m_n):PositivePW(uint(COantsForMod::g_M_minus_2));}TE TE CE Mod& Mod::PositivePW(INT EX)NE{Mod PW{*TH};EX--;WH(EX != 0){(EX & 1)== 1?*TH *= PW:*TH;EX >>= 1;PW *= PW;}RE *TH;}TE TE CE Mod& Mod::NonNegativePW(INT EX)NE{RE EX == 0?Ref(m_n = 1):Ref(PositivePW(MO(EX)));}TE TE CE Mod& Mod::PW(INT EX){bool neg = EX < 0;AS(!(neg && m_n == 0));RE neg?PositivePW(MO(EX *= COantsForMod::g_M_minus_2_neg)):NonNegativePW(MO(EX));}TE CE VO Mod::swap(Mod& n)NE{std::swap(m_n,n.m_n);}TE IN CO Mod& Mod::Inverse(CO uint& n){AS(n < COantsForMod::g_memory_LE);ST Mod memory[COantsForMod::g_memory_LE]={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr].m_n = M - memory[M % LE_curr].m_n * ull(M / LE_curr)% M;LE_curr++;}RE memory[n];}TE IN CO Mod& Mod::Factorial(CO uint& n){AS(n < COantsForMod::g_memory_LE);ST Mod memory[COantsForMod::g_memory_LE]={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){(memory[LE_curr]= memory[LE_curr - 1])*= LE_curr;LE_curr++;}RE memory[n];}TE IN CO Mod& Mod::FactorialInverse(CO uint& n){ST Mod memory[COantsForMod::g_memory_LE]={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){(memory[LE_curr]= memory[LE_curr - 1])*= Inverse(LE_curr);LE_curr++;}RE memory[n];}TE IN Mod Mod::Combination(CO uint& n,CO uint& i){RE i <= n?Factorial(n)* FactorialInverse(i)* FactorialInverse(n - i):zero();}TE CE CO uint& Mod::RP()CO NE{RE m_n;}TE CE Mod Mod::DeRP(CO uint& n)NE{Mod n_copy{};n_copy.m_n = n;RE n_copy;}TE IN CO Mod& Mod::zero()NE{ST CE CO Mod z{};RE z;}TE IN CO Mod& Mod::one()NE{ST CE CO Mod o{1};RE o;}TE TE CE Mod& Mod::Ref(T&& n)NE{RE *TH;}TE CE uint& Mod::Normalise(uint& n)NE{RE n < M?n:n -= M;}TE IN Mod Inverse(CO Mod& n){RE MO(Mod(n).Invert());}TE CE Mod Inverse_CE(Mod n)NE{RE MO(n.NonNegativePW(M - 2));}TE CE Mod PW(Mod n,INT EX){RE MO(n.PW(MO(EX)));}TE CE VO swap(Mod& n0,Mod& n1)NE{n0.swap(n1);}TE IN string to_string(CO Mod& n)NE{RE to_string(n.RP())+ " + " + to_string(M)+ "Z";}TE IN basic_istream& OP>>(basic_istream& is,Mod& n){ll m;is >> m;n = m;RE is;}TE IN basic_ostream& OP<<(basic_ostream& os,CO Mod& n){RE os << n.RP();} // AAA 常設ライブラリは以上に挿入する。 #define INCLUDE_LIBRARY #include __FILE__ #endif // INCLUDE_LIBRARY #endif // INCLUDE_SUB #endif // INCLUDE_MAIN