#ifndef INCLUDE_MODE #define INCLUDE_MODE // #define REACTIVE // #define USE_GETLINE #endif #ifdef INCLUDE_MAIN IN VO Solve() { CIN( int , K , N , M ); CIN_A( int , A , K ); CIN_A( int , B , N ); Map A_hind{}; FOR( k , 0 , K ){ A_hind[A[k]]++; } using path_type = tuple; vector> E( N + 2 ); FOR_ITR( A_hind ){ E[0].push_back( { itr->first , 0 , itr->second } ); } FOREQ( i , 1 , N ){ E[i].push_back( { N + 1 , 0 , B[i-1] } ); } FOR( j , 0 , M ){ CIN( ll , uj , vj , wj ); E[uj].push_back( { vj , wj , K } ); E[vj].push_back( { uj , wj , K } ); } Graph graph{ N + 2 , Get( E ) }; MinimumCostFlow mcf{ graph , 1LL , 1LL<<62 }; auto [answer,flow] = mcf.GetFlow( 0 , N + 1 , K , false ); RETURN( answer ); } REPEAT_MAIN(1); #else // INCLUDE_MAIN #ifdef INCLUDE_SUB // COMPAREに使用。圧縮時は削除する。 ll Naive( ll N , ll M , ll K ) { ll answer = N + M + K; return answer; } // COMPAREに使用。圧縮時は削除する。 ll Answer( ll N , ll M , ll K ) { // START_WATCH; ll answer = N + M + K; // // TLに準じる乱択や全探索。デフォルトの猶予は100.0[ms]。 // CEXPR( double , TL , 2000.0 ); // while( CHECK_WATCH( TL ) ){ // } return answer; } // 圧縮時は中身だけ削除する。 IN VO Experiment() { // CEXPR( int , bound , 10 ); // FOREQ( N , 0 , bound ){ // FOREQ( M , 0 , bound ){ // FOREQ( K , 0 , bound ){ // COUT( N , M , K , ":" , Naive( N , M , K ) ); // } // } // // cout << Naive( N ) << ",\n"[N==bound]; // } } // 圧縮時は中身だけ削除する。 IN VO SmallTest() { // CEXPR( int , bound , 10 ); // FOREQ( N , 0 , bound ){ // FOREQ( M , 0 , bound ){ // FOREQ( K , 0 , bound ){ // COMPARE( N , M , K ); // } // } // } } // 圧縮時は中身だけ削除する。 IN VO RandomTest() { // CEXPR( int , bound_N , 1e5 ); CIN_ASSERT( N , 1 , bound_N ); // CEXPR( ll , bound_M , 1e18 ); CIN_ASSERT( M , 1 , bound_M ); // CEXPR( ll , bound_K , 1e9 ); CIN_ASSERT( K , 1 , bound_K ); // COMPARE( N , M , N ); } #define INCLUDE_MAIN #include __FILE__ #else // INCLUDE_SUB #ifdef INCLUDE_LIBRARY /* C-x 3 C-x o C-x C-fによるファイル操作用 BFS (5KB) c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/compress.txt CoordinateCompress (3KB) c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/CoordinateCompress/compress.txt DFSOnTree (11KB) c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepthFirstSearch/Tree/a.hpp Divisor (4KB) c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txt IntervalAddBIT (9KB) c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/IntervalAdd/compress.txt Polynomial (21KB) c:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txt UnionFind (3KB) c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/UnionFindForest/compress.txt */ // VVV 常設でないライブラリは以下に挿入する。 TE CL VirtualSemirng{PU:VI U Sum(CO U& u0,CO U& u1)= 0;VI CO U& Zero()CO NE = 0;VI U Product(CO U& u0,CO U& u1)= 0;VI MONOID& AdditiveMonoid()NE = 0;VI SEMIGROUP& MultiplicativeSemigroup()NE = 0;US type = U;};TE CL AbstractSemirng:VI PU VirtualSemirng{PU:MONOID m_R0;SEMIGROUP m_R1;IN AbstractSemirng(MONOID R0,SEMIGROUP R1);IN U Sum(CO U& u0,CO U& u1);IN CO U& Zero()CO NE;IN U Product(CO U& u0,CO U& u1);IN MONOID& AdditiveMonoid()NE;IN SEMIGROUP& MultiplicativeSemigroup()NE;};TE CL Semirng:PU AbstractSemirng,MultiplicativeMagma>{PU:IN Semirng();}; TE IN AbstractSemirng::AbstractSemirng(MONOID R0,SEMIGROUP R1):m_R0(MO(R0)),m_R1(MO(R1)){}TE IN Semirng::Semirng():AbstractSemirng,MultiplicativeMagma>(AdditiveMonoid(),MultiplicativeMagma()){}TE IN U AbstractSemirng::Sum(CO U& u0,CO U& u1){RE m_R0.Sum(u0,u1);}TE IN CO U& AbstractSemirng::Zero()CO NE{RE m_R0.Zero();}TE IN U AbstractSemirng::Product(CO U& u0,CO U& u1){RE m_R1.Product(u0,u1);}TE IN MONOID& AbstractSemirng::AdditiveMonoid()NE{RE m_R0;}TE IN SEMIGROUP& AbstractSemirng::MultiplicativeSemigroup()NE{RE m_R1;} TE CL VirtualRing:VI PU VirtualSemirng{PU:VI U Inverse(CO U& u)= 0;VI CO U& One()CO NE = 0;IN GROUP& AdditiveGroup()NE;IN MONOID& MultiplicativeMonoid()NE;};TE CL AbstractRing:VI PU VirtualRing,PU AbstractSemirng{PU:IN AbstractRing(GROUP R0,MONOID R1);IN U Inverse(CO U& u);IN CO U& One()CO NE;};TE CL Ring:VI PU AbstractRing,MultiplicativeMonoid>{PU:IN Ring(CO U& one_U);}; TE IN AbstractRing::AbstractRing(GROUP R0,MONOID R1):AbstractSemirng(MO(R0),MO(R1)){}TE IN Ring::Ring(CO U& one_U):AbstractRing,MultiplicativeMonoid>(AdditiveGroup(),MultiplicativeMonoid(one_U)){}TE IN U AbstractRing::Inverse(CO U& u){RE TH->m_R0.Inverse(u);}TE IN CO U& AbstractRing::One()CO NE{RE TH->m_R1.One();}TE IN GROUP& VirtualRing::AdditiveGroup()NE{RE TH->AdditiveMonoid();}TE IN MONOID& VirtualRing::MultiplicativeMonoid()NE{RE TH->MultiplicativeSemigroup();} #define BELLMAN_FORD_BODY(INITIALISE_PREV,SET_PREV)CO U& one = m_M.One();CO U& infty = TH->Infty();AS(one < infty);CRI SZ = m_G.SZ();auto&& i_start = m_G.Enumeration_inv(t_start);AS(0 <= i_start && i_start < SZ);VE found(SZ);VE weight(SZ,infty);found[i_start]= true;weight[i_start]= 0;INITIALISE_PREV;for(int LE = 0;LE < SZ;LE++){for(int i = 0;i < SZ;i++){if(found[i]){CO U& weight_i = weight[i];AS(weight_i != infty);auto&& edge_i = m_G.Edge(m_G.Enumeration(i));for(auto IT = edge_i.BE(),EN = edge_i.EN();IT != EN;IT++){auto&& j = m_G.Enumeration_inv(IT->first);CO U& edge_ij = IT->second;U temp = m_M.Product(weight_i,edge_ij);U& weight_j = weight[j];if(weight_j > temp){found[j]= true;weight_j = MO(temp);SET_PREV;}}}}}bool valid = true;for(int i = 0;i < SZ && valid;i++){if(found[i]){CO U& weight_i = weight[i];auto&& edge_i = m_G.Edge(m_G.Enumeration(i));for(auto IT = edge_i.begin(),EN = edge_i.EN();IT != EN;IT++){auto&& j = m_G.Enumeration_inv(IT->first);CO U& edge_ij = IT->second;U& weight_j = weight[j];CO U temp = m_M.Product(weight_i,edge_ij);if(weight_j > temp){valid = false;break;}}}} TE CL AbstractBellmanFord:PU PointedSet{PU:GRAPH& m_G;MONOID m_M;IN AbstractBellmanFord(GRAPH& G,MONOID M,CO U& infty);tuple> GetDistance(CO inner_t& t_start,CO bool& dummy = true);TE TY V> tuple,VE>>> GetPath(CO inner_t& t_start,CO V>& t_finals,CO bool& dummy = true);tuple,VE>>> GetPath(CO inner_t& t_start,CO bool& dummy);};TE CL BellmanFord:PU AbstractBellmanFord,ll>{PU:IN BellmanFord(GRAPH& G);}; TE IN AbstractBellmanFord::AbstractBellmanFord(GRAPH& G,MONOID M,CO U& infty):PointedSet(infty),m_G(G),m_M(MO(M)){ST_AS(! is_same_v);}TE IN BellmanFord::BellmanFord(GRAPH& G):AbstractBellmanFord,ll>(G,AdditiveMonoid<>(),4611686018427387904){}TE tuple> AbstractBellmanFord::GetDistance(CO inner_t& t_start,CO bool& dummy){BELLMAN_FORD_BODY(,);RE{valid,MO(weight)};}TE TE TY V>tuple,VE>>> AbstractBellmanFord::GetPath(CO inner_t& t_start,CO V>& t_finals,CO bool& dummy){BELLMAN_FORD_BODY(VE prev(SZ),prev[j]= i);VE>> path{};if(valid){CO int path_SZ = t_finals.SZ();path.reserve(path_SZ);for(auto IT = t_finals.begin(),EN = t_finals.EN();IT != EN;IT++){LI> path_j{};CO inner_t& t_final = *IT;path_j.push_back(t_final);int i = m_G.Enumeration_inv(t_final);if(found[i]){WH(i != i_start){i = prev[i];path_j.push_front(m_G.Enumeration(i));}}path.push_back(path_j);}}RE{valid,MO(weight),MO(path)};}TE tuple,VE>>> AbstractBellmanFord::GetPath(CO inner_t& t_start,CO bool& dummy){CRI SZ = m_G.SZ();VE> t_finals(SZ);for(int i = 0;i < SZ;i++){t_finals[i]= i;}RE GetPath(t_start,t_finals);} #define DIJKSTRA_PREP(INITIALISE_PREV)CO U& one = m_M.One();AS(one < infty);auto&& i_start = m_G.Enumeration_inv(t_start);AS(0 <= i_start && i_start < SZ);INITIALISE_PREV; #define DIJKSTRA_BODY_1(SET_PREV)if(walk_LE == -1){walk_LE = SZ - 1;}weight[i_start]= one;int i = i_start;for(int num = 0;num < walk_LE;num++){CO U& weight_i = weight[i];found[i]= true;auto&& edge_i = m_G.Edge(m_G.Enumeration(i));for(auto IT = edge_i.BE(),EN = edge_i.EN();IT != EN;IT++){auto&& j = m_G.Enumeration_inv(IT->first);if(!found[j]){CO U& edge_ij = get<1>(*IT);U temp = m_M.Product(weight_i,edge_ij);AS(temp < infty);U& weight_j = weight[j];if(temp < weight_j){SET_PREV;weight_j = MO(temp);}}}U temp = infty;for(int j = 0;j < SZ;j++){if(!found[j]){U& weight_j = weight[j];if(weight_j < temp){temp = weight_j;i = j;}}}} #define DIJKSTRA_BODY_2(CHECK_FINAL,SET_PREV)AS(walk_LE == -1);set> vertex{};vertex.insert(pair(weight[i_start]= one,i_start));WH(! vertex.empty()){auto BE = vertex.BE();auto[weight_i,i]= *BE;CHECK_FINAL;found[i]= true;vertex.erase(BE);auto&& edge_i = m_G.Edge(m_G.Enumeration(i));LI> changed_vertex{};for(auto IT = edge_i.BE(),EN = edge_i.EN();IT != EN;IT++){auto&& j = m_G.Enumeration_inv(IT->first);if(!found[j]){CO U& edge_ij = get<1>(*IT);U temp = m_M.Product(weight_i,edge_ij);AS(temp < infty);U& weight_j = weight[j];if(temp < weight_j){if(weight_j != infty){vertex.erase(pair(weight_j,j));}SET_PREV;changed_vertex.push_back(pair(weight_j = MO(temp),j));}}}for(auto IT_changed = changed_vertex.BE(),EN_changed = changed_vertex.EN();IT_changed != EN_changed;IT_changed++){vertex.insert(*IT_changed);}} #define DIJKSTRA_BODY(INITIALISE_PREV,CHECK_FINAL,SET_PREV)DIJKSTRA_PREP(INITIALISE_PREV);if(many_edges){DIJKSTRA_BODY_1(SET_PREV);}else{DIJKSTRA_BODY_2(CHECK_FINAL,SET_PREV);} TE CL AbstractDijkstra:PU PointedSet{PU:GRAPH& m_G;COMM_MONOID m_M;IN AbstractDijkstra(GRAPH& G,COMM_MONOID M,CO U& infty);U GetDistance(CO inner_t& t_start,CO inner_t& t_final,CO bool& many_edges = true,int walk_LE = -1);VE GetDistance(CO inner_t& t_start,CO bool& many_edges = true,int walk_LE = -1);VO SetDistance(VE& weight,VE& found,CO inner_t& t_start,CO bool& many_edges = true,int walk_LE = -1);pair>> GetPath(CO inner_t& t_start,CO inner_t& t_final,CO bool& many_edges = true,int walk_LE = -1);TE TY V> pair,VE>>> GetPath(CO inner_t& t_start,CO V>& t_finals,CO bool& many_edges = true,int walk_LE = -1);pair,VE>>> GetPath(CO inner_t& t_start,CO bool& many_edges = true,int walk_LE = -1);};TE CL Dijkstra:PU AbstractDijkstra,ll>{PU:IN Dijkstra(GRAPH& G);}; TE IN AbstractDijkstra::AbstractDijkstra(GRAPH& G,COMM_MONOID M,CO U& infty):PointedSet(infty),m_G(G),m_M(MO(M)){ST_AS(! is_same_v);}TE IN Dijkstra::Dijkstra(GRAPH& G):AbstractDijkstra,ll>(G,AdditiveMonoid<>(),4611686018427387904){}TE U AbstractDijkstra::GetDistance(CO inner_t& t_start,CO inner_t& t_final,CO bool& many_edges,int walk_LE){CRI SZ = m_G.SZ();CO U& infty = TH->Infty();VE weight(SZ,infty);VE found(SZ);auto&& i_final = m_G.Enumeration_inv(t_final);DIJKSTRA_BODY(,if(i == i_final){break;},);U AN{MO(weight[i_final])};RE AN;}TE VE AbstractDijkstra::GetDistance(CO inner_t& t_start,CO bool& many_edges,int walk_LE){CRI SZ = m_G.SZ();CO U& infty = TH->Infty();VE weight(SZ,infty);VE found(SZ);DIJKSTRA_BODY(,,);RE weight;}TE VO AbstractDijkstra::SetDistance(VE& weight,VE& found,CO inner_t& t_start,CO bool& many_edges,int walk_LE){CRI SZ = m_G.SZ();CO U& infty = TH->Infty();AS(int(weight.SZ())== SZ);AS(int(found.SZ())== SZ);DIJKSTRA_BODY(,,);RE;}TE pair>> AbstractDijkstra::GetPath(CO inner_t& t_start,CO inner_t& t_final,CO bool& many_edges,int walk_LE){CRI SZ = m_G.SZ();CO U& infty = TH->Infty();VE weight(SZ,infty);VE found(SZ);auto&& i_final = m_G.Enumeration_inv(t_final);DIJKSTRA_BODY(VE prev(SZ),if(i == i_final){break;},prev[j]= i);int i = i_final;LI> path{};path.push_back(t_final);if(weight[i]!= infty){WH(i != i_start){i = prev[i];path.push_front(m_G.Enumeration(i));}}U AN{MO(weight[i_final])};RE{MO(AN),MO(path)};}TE TE TY V>pair,VE>>> AbstractDijkstra::GetPath(CO inner_t& t_start,CO V>& t_finals,CO bool& many_edges,int walk_LE){CRI SZ = m_G.SZ();CO U& infty = TH->Infty();VE weight(SZ,infty);VE found(SZ);DIJKSTRA_BODY(VE prev(SZ),,prev[j]= i);CO int path_SZ = t_finals.SZ();VE>> path;path.reserve(path_SZ);for(auto IT = t_finals.BE(),EN = t_finals.EN();IT != EN;IT++){LI> path_j{};CO inner_t& t_final = *IT;path_j.push_back(t_final);int i = m_G.Enumeration_inv(t_final);if(weight[i]!= infty){WH(i != i_start){i = prev[i];path_j.push_front(m_G.Enumeration(i));}}path.push_back(path_j);}RE{MO(weight),MO(path)};}TE pair,VE>>> AbstractDijkstra::GetPath(CO inner_t& t_start,CO bool& many_edges,int walk_LE){CRI SZ = m_G.SZ();VE> t_finals(SZ);for(int i = 0;i < SZ;i++){t_finals[i]= i;}RE GetPath(t_start,t_finals,many_edges,walk_LE);} #define POTENTIALISED_DIJKSTRA_BODY(GET,WEIGHT,...)CO U& infty = TH->Infty();if(m_valid){CO U& zero = m_M.Zero();auto edge =[&](CO T& t){CO U& potential_i = m_potential[m_G.Enumeration_inv(t)];AS(potential_i < infty);auto edge_i = m_G.Edge(t);LI> AN{};for(auto IT = edge_i.BE(),EN = edge_i.EN();IT != EN;IT++){auto& e = *IT;if(m_on(e)){CO auto& v_j = get<0>(e);U& w_j = get<1>(e);CO U& potential_j = m_potential[m_G.Enumeration_inv(v_j)];AS(w_j < infty && potential_j < infty);CO U potential_j_inv = m_M.Inverse(potential_j);w_j = m_M.Sum(m_M.Sum(w_j,potential_i),potential_j_inv);AS(!(w_j < zero)&& w_j < infty);AN.push_back({v_j,MO(w_j)});}}RE AN;};auto G = m_G.GetGraph(MO(edge));AbstractDijkstra d{G,m_M,infty};auto value = d.GET;CRI SZ = m_G.SZ();for(int i = 0;i < SZ;i++){auto& weight_i = WEIGHT[i];if(weight_i != infty){weight_i = m_M.Sum(weight_i,m_potential[i]);}}RE{m_valid,__VA_ARGS__};}auto edge =[&](CO T& t){auto&& edge_i = m_G.Edge(t);LI> AN{};for(auto IT = edge_i.BE(),EN = edge_i.EN();IT != EN;IT++){if(m_on(*IT)){AN.push_back({get<0>(*IT),get<1>(*IT)});}}RE AN;};auto G = m_G.GetGraph(MO(edge));AbstractBellmanFord d{G,m_M,infty};RE d.GET; TE CL AbstractPotentialisedDijkstra:PU PointedSet{PU:GRAPH& m_G;GROUP m_M;T m_t_start;On m_on;bool m_valid;VE m_potential;IN AbstractPotentialisedDijkstra(GRAPH& G,GROUP M,CO T& t_start,CO U& infty,On on,CO bool& negative = true);IN AbstractPotentialisedDijkstra(GRAPH& G,GROUP M,CO T& t_start,CO U& infty,On on,CO bool& valid,VE potential);IN CO bool& Valid()CO NE;IN CO VE& Potential()CO NE;IN VO SetPotential(CO bool& valid,VE potential);tuple> GetDistance(CO bool& many_edges = true);TE tuple,VE>> GetPath(CO Args&... args);};TE CL PotentialisedDijkstra:PU AbstractPotentialisedDijkstra,ll,On>{PU:TE IN PotentialisedDijkstra(GRAPH& G,CO T& t_start,On on,Args&&... args);}; TE IN AbstractPotentialisedDijkstra::AbstractPotentialisedDijkstra(GRAPH& G,GROUP M,CO T& t_start,CO U& infty,On on,CO bool& negative):AbstractPotentialisedDijkstra(G,MO(M),t_start,infty,MO(on),true,VE()){if(negative){auto edge =[&](CRI t){auto&& edge_i = m_G.Edge(t);LI> AN{};for(auto IT = edge_i.BE(),EN = edge_i.EN();IT != EN;IT++){CO auto& e = *IT;AN.push_back({get<0>(e),get<1>(e)});}RE AN;};auto G_full = m_G.GetGraph(MO(edge));AbstractBellmanFord bf{G_full,m_M,infty};auto[valid,potential]= bf.GetDistance(m_t_start);m_valid = valid;m_potential = MO(potential);}else{m_potential = VE(m_G.SZ(),m_M.Zero());}}TE IN AbstractPotentialisedDijkstra::AbstractPotentialisedDijkstra(GRAPH& G,GROUP M,CO T& t_start,CO U& infty,On on,CO bool& valid,VE potential):PointedSet(infty),m_G(G),m_M(MO(M)),m_t_start(t_start),m_on(MO(on)),m_valid(valid),m_potential(potential){ST_AS(is_invocable_r_v().Edge(declval()).back())>);}TE TE IN PotentialisedDijkstra::PotentialisedDijkstra(GRAPH& G,CO T& t_start,On on,Args&&... args):AbstractPotentialisedDijkstra,ll,On>(G,AdditiveGroup<>(),t_start,4611686018427387904,MO(on),forward>(args)...){}TE IN CO bool& AbstractPotentialisedDijkstra::Valid()CO NE{RE m_valid;}TE IN CO VE& AbstractPotentialisedDijkstra::Potential()CO NE{RE m_potential;}TE IN VO AbstractPotentialisedDijkstra::SetPotential(CO bool& valid,VE potential){AS(int(potential.SZ())== m_G.SZ());m_valid = valid;m_potential = MO(potential);}TE tuple> AbstractPotentialisedDijkstra::GetDistance(CO bool& many_edges){POTENTIALISED_DIJKSTRA_BODY(GetDistance(m_t_start,many_edges),value,MO(value));}TE TE tuple,VE>> AbstractPotentialisedDijkstra::GetPath(CO Args&... args){POTENTIALISED_DIJKSTRA_BODY(GetPath(m_t_start,args...),get<0>(value),MO(get<0>(value)),MO(get<1>(value)));} TE CL AbstractMinimumCostFlow:PU PointedSet{PU:GRAPH& m_G;RING m_R;IN AbstractMinimumCostFlow(GRAPH& G,RING R,CO U& infty);pair,U>>>> GetFlow(CO inner_t& t_start,CO inner_t& t_final,U f,CO bool& many_edges = true);};TE CL MinimumCostFlow:PU AbstractMinimumCostFlow,U>{PU:IN MinimumCostFlow(GRAPH& G,CO U& one_U,CO U& infty);}; TE IN AbstractMinimumCostFlow::AbstractMinimumCostFlow(GRAPH& G,RING R,CO U& infty):PointedSet(infty),m_G(G),m_R(MO(R)){}TE IN MinimumCostFlow::MinimumCostFlow(GRAPH& G,CO U& one_U,CO U& infty):AbstractMinimumCostFlow,U>(G,Ring(one_U),infty){}TE pair,U>>>> AbstractMinimumCostFlow::GetFlow(CO inner_t& t_start,CO inner_t& t_final,U f,CO bool& many_edges){US T = inner_t;CO U& zero = m_R.Zero();CO U& infty = TH->Infty();CRI SZ = m_G.SZ();VE>> rest(SZ);VE>> flow(SZ);int edge_num = 0;for(int i = 0;i < SZ;i++){auto&& ui = m_G.Enumeration(i);auto&& edge_i = m_G.Edge(ui);for(auto IT = edge_i.begin(),EN = edge_i.EN();IT != EN;IT++){CO auto&[vj,wj,fj]= *IT;AS(ui != vj && !(wj < zero)&& wj < infty && !(fj < zero)&& fj < infty);auto&& j = m_G.Enumeration_inv(vj);rest[i].push_back({j,wj,fj,false,edge_num});rest[j].push_back({i,m_R.Inverse(wj),zero,true,edge_num});flow[i].push_back({vj,0});edge_num++;}}for(int i = 0;i < SZ;i++){auto& rest_i = rest[i];sort(rest_i.begin(),rest_i.EN());}VE> edge_pair(edge_num,{-1,-1,-1,-1});for(int i = 0;i < SZ;i++){CO auto& rest_i = rest[i];CO int SZ_i = rest_i.SZ();for(int j = 0;j < SZ_i;j++){CO auto& rest_ij = rest_i[j];auto&[i_0,j_0,i_1,j_1]= edge_pair[get<4>(rest_ij)];if(i_0 == -1){i_0 = i;j_0 = j;}else{i_1 = i;j_1 = j;}}}auto edge =[&](CO T& t)-> CO VE>&{RE rest[m_G.Enumeration_inv(t)];};auto on =[&](CO tuple& e){RE zero < get<2>(e);};auto G = m_G.GetGraph(MO(edge));AbstractPotentialisedDijkstra pd{G,m_R.AdditiveGroup(),t_start,infty,MO(on),false};auto&& i_start = m_G.Enumeration_inv(t_start);LI t_finals ={t_final};U w = zero;WH(zero < f){auto[valid,weight,paths]= pd.GetPath(t_finals,many_edges);AS(valid);pd.SetPotential(valid,MO(weight));auto& path = paths.front();auto IT_path = path.begin(),IT_path_prev = IT_path,EN_path = path.EN();AS(IT_path != EN_path);int i = i_start;LI> flow_num{};U f_min = f;WH(++IT_path != EN_path){T t = *IT_path;flow_num.push_back({i,m_G.Enumeration_inv(t),-1,-1});auto&[i_curr,i_next,j_1,j_2]= flow_num.back();CO auto& rest_i = rest[i_curr];int SZ_i = rest_i.SZ();for(int j = 0;j < SZ_i;j++){CO auto&[vj,wj,fj,rj,numj]= rest_i[j];if(zero < fj && vj == t){j_1 = j;fj < f_min?f_min = fj:f_min;if(rj){i_curr = i_next;t = *IT_path_prev;}break;}}AS(j_1 != -1);auto& flow_i = flow[i_curr];SZ_i = flow_i.SZ();for(int j = 0;j < SZ_i;j++){CO auto&[vj,fj]= flow_i[j];if(vj == t){j_2 = j;break;}}AS(j_2 != -1);i_curr = i;i = i_next;IT_path_prev = IT_path;}CO U f_min_minus = m_R.Inverse(f_min);U w_diff = zero;for(auto IT = flow_num.begin(),EN = flow_num.EN();IT != EN;IT++){CO auto&[i_curr,i_next,j_1,j_2]= *IT;auto&[vj,wj,fj,rj,numj]= rest[i_curr][j_1];CO auto& edge_pair_i = edge_pair[numj];CRI j_3 = get<0>(edge_pair_i)== i_curr?get<3>(edge_pair_i):get<1>(edge_pair_i);auto& fj_inv = get<2>(rest[i_next][j_3]);auto& f_curr = get<1>(flow[rj?i_next:i_curr][j_2]);w_diff = m_R.Sum(w_diff,wj);fj = m_R.Sum(fj,f_min_minus);fj_inv = m_R.Sum(fj_inv,f_min);f_curr = m_R.Sum(f_curr,f_min);}f = m_R.Sum(f,f_min_minus);w = m_R.Sum(w,m_R.Product(f_min,w_diff));}RE{MO(w),MO(flow)};} // AAA 常設でないライブラリは以上に挿入する。 #define INCLUDE_SUB #include __FILE__ #else // INCLUDE_LIBRARY #ifdef DEBUG #define _GLIBCXX_DEBUG #define REPEAT_MAIN( BOUND ) START_MAIN; signal( SIGABRT , &AlertAbort ); AutoCheck( exec_mode , use_getline ); CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if( exec_mode == solve_mode ){ if CE( bound_test_case_num > 1 ){ CERR( "テストケースの個数を入力してください。" ); SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } } else { if( exec_mode == experiment_mode ){ Experiment(); } else if( exec_mode == small_test_mode ){ SmallTest(); } else if( exec_mode == random_test_mode ){ CERR( "ランダムテストを行う回数を指定してください。" ); SET_LL( test_case_num ); REPEAT( test_case_num ){ RandomTest(); } } RE 0; } FINISH_MAIN #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE2 ) #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX ) ); AS( ( MIN ) <= A && A <= ( MAX ) ) #define SET_ASSERT( A , MIN , MAX ) if( exec_mode == solve_mode ){ SET_LL( A ); ASSERT( A , MIN , MAX ); } else if( exec_mode == random_test_mode ){ CERR( #A , " = " , ( A = GetRand( MIN , MAX ) ) ); } else { AS( false ); } #define SOLVE_ONLY ST_AS( __FUNCTION__[0] == 'S' ) #define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl #define COUT( ... ) VariadicCout( cout << "出力: " , __VA_ARGS__ ) << endl #define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl #define COUT_A( A , N ) cout << "出力: "; OUTPUT_ARRAY( cout , A , N ) << endl #define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl #define COUT_ITR( A ) cout << "出力: "; OUTPUT_ITR( cout , A ) << endl #else #pragma GCC optimize ( "O3" ) #pragma GCC optimize ( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if CE( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 ) #define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) ) #define SET_ASSERT( A , MIN , MAX ) SET_LL( A ); ASSERT( A , MIN , MAX ) #define SOLVE_ONLY #define CERR( ... ) #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL #define CERR_A( A , N ) #define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << ENDL #define CERR_ITR( A ) #define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << ENDL #endif #ifdef REACTIVE #define ENDL endl #else #define ENDL "\n" #endif #ifdef USE_GETLINE #define SET_LL( A ) { GETLINE( A ## _str ); A = stoll( A ## _str ); } #define GETLINE_SEPARATE( SEPARATOR , ... ) SOLVE_ONLY; string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ ) #define GETLINE( ... ) SOLVE_ONLY; GETLINE_SEPARATE( '\n' , __VA_ARGS__ ) #else #define SET_LL( A ) cin >> A #define CIN( LL , ... ) SOLVE_ONLY; LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ ) #define SET_A( A , N ) SOLVE_ONLY; FOR( VARIABLE_FOR_SET_A , 0 , N ){ cin >> A[VARIABLE_FOR_SET_A]; } #define CIN_A( LL , A , N ) VE A( N ); SET_A( A , N ); #endif #include using namespace std; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define FINISH_MAIN REPEAT( test_case_num ){ if CE( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve(); CERR( "" ); } } #define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now() #define CURRENT_TIME static_cast( chrono::duration_cast( chrono::system_clock::now() - watch ).count() / 1000.0 ) #define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 ) #define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE #define SET_A_ASSERT( A , N , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A] , MIN , MAX ); } #define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX ) #define CIN_A_ASSERT( A , N , MIN , MAX ) vector A( N ); SET_A_ASSERT( A , N , MIN , MAX ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( decldecay_t( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( decldecay_t( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( decldecay_t( INITIAL ) VAR = INITIAL ; VAR + 1 > FINAL ; VAR -- ) #define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .BE() , end_ ## ARRAY = ARRAY .EN() #define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES ) #define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ) #define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?"":" "); } OS #define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.BE() , EN_FOR_OUTPUT_ITR = A.EN(); bool VARIABLE_FOR_OUTPUT_ITR = ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; WH( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR = ++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS #define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); RE #define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; COUT( "(" , #__VA_ARGS__ , ") == (" , __VA_ARGS__ , ") : Naive == " , naive , match ? "==" : "!=" , answer , "== Answer" ); if( !match ){ RE; } // 圧縮用 #define TE template #define TY typename #define US using #define ST static #define AS assert #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begin #define EN end #define SZ size #define LE length #define PW Power #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& #define VI virtual #define ST_AS static_assert #define reMO_CO remove_const #define is_COructible_v is_constructible_v #define rBE rbegin #define reSZ resize // 型のエイリアス #define decldecay_t(VAR)decay_t TE US ret_t = decltype(declval()(declval()...)); TE US inner_t = TY T::type; US uint = unsigned int; US ll = long long; US ull = unsigned long long; US ld = long double; US lld = __float128; TE US T2 = pair; TE US T3 = tuple; TE US T4 = tuple; US path = pair; // 入出力用 #define DF_OF_COUT_FOR_VE(V)TE IN basic_ostream& OP<<(basic_ostream& os,CO V& arg){auto BE = arg.BE(),EN = arg.EN();auto IT = BE;WH(IT != EN){(IT == BE?os:os << " ")<< *IT;IT++;}RE os;} TE IN basic_istream& VariadicCin(basic_istream& is){RE is;} TE IN basic_istream& VariadicCin(basic_istream& is,Arg& arg,ARGS&... args){RE VariadicCin(is >> arg,args...);} TE IN basic_istream& VariadicGetline(basic_istream& is,CO char& separator){RE is;} TE IN basic_istream& VariadicGetline(basic_istream& is,CO char& separator,Arg& arg,ARGS&... args){RE VariadicGetline(getline(is,arg,separator),separator,args...);} DF_OF_COUT_FOR_VE(VE); DF_OF_COUT_FOR_VE(LI); DF_OF_COUT_FOR_VE(set); DF_OF_COUT_FOR_VE(unordered_set); TE IN basic_ostream& OP<<(basic_ostream& os,CO pair& arg){RE os << arg.first << " " << arg.second;} TE IN basic_ostream& VariadicCout(basic_ostream& os,CO Arg& arg){RE os << arg;} TE IN basic_ostream& VariadicCout(basic_ostream& os,CO Arg1& arg1,CO Arg2& arg2,CO ARGS&... args){RE VariadicCout(os << arg1 << " ",arg2,args...);} // 算術用 TE CE T PositiveBaseRS(CO T& a,CO T& p){RE a >= 0?a % p:p - 1 -((-(a + 1))% p);} TE CE T RS(CO T& a,CO T& p){RE PositiveBaseRS(a,p < 0?-p:p);} TE CE T PositiveBaseQuotient(CO T& a,CO T& p){RE(a - PositiveBaseRS(a,p))/ p;} TE CE T Quotient(CO T& a,CO T& p){RE p < 0?PositiveBaseQuotient(-a,-p):PositiveBaseQuotient(a,p);} #define POWER( ANSWER , ARGUMENT , EXPONENT ) \ ST_AS( ! is_same::value && ! is_same::value ); \ decldecay_t( ARGUMENT ) ANSWER{ 1 }; \ { \ decldecay_t( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \ decldecay_t( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ WH( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ ll ANSWER{ 1 }; \ { \ ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( ARGUMENT ) % ( MODULO ) ) % ( MODULO ); \ ARGUMENT_FOR_SQUARE_FOR_POWER < 0 ? ARGUMENT_FOR_SQUARE_FOR_POWER += ( MODULO ) : ARGUMENT_FOR_SQUARE_FOR_POWER; \ decldecay_t( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ WH( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CE_LENGTH , MODULO ) \ ll ANSWER[CE_LENGTH]; \ ll ANSWER_INV[CE_LENGTH]; \ ll INVERSE[CE_LENGTH]; \ { \ ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \ FOREQ( i , 1 , MAX_INDEX ){ \ ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \ } \ ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ FOREQ( i , 2 , MAX_INDEX ){ \ ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % ( MODULO ) ) ) %= ( MODULO ); \ } \ } \ // 二分探索用 // EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= CO_TARGETの整数解を格納。 #define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , CO_TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \ ST_AS( ! is_same::value && ! is_same::value ); \ ll ANSWER = MINIMUM; \ { \ ll L_BS = MINIMUM; \ ll U_BS = MAXIMUM; \ ANSWER = UPDATE_ANSWER; \ ll EXPRESSION_BS; \ CO ll CO_TARGET_BS = ( CO_TARGET ); \ ll DIFFERENCE_BS; \ WH( L_BS < U_BS ){ \ DIFFERENCE_BS = ( EXPRESSION_BS = ( EXPRESSION ) ) - CO_TARGET_BS; \ CERR( "二分探索中:" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS :" , #EXPRESSION , "=" , EXPRESSION_BS , DIFFERENCE_BS > 0 ? ">" : DIFFERENCE_BS < 0 ? "<" : "=" , CO_TARGET_BS , "=" , #CO_TARGET ); \ if( DIFFERENCE_BS INEQUALITY_FOR_CHECK 0 ){ \ U_BS = UPDATE_U; \ } else { \ L_BS = UPDATE_L; \ } \ ANSWER = UPDATE_ANSWER; \ } \ if( L_BS > U_BS ){ \ CERR( "二分探索失敗:" , "L_BS =" , L_BS , ">" , U_BS , "= U_BS :" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \ CERR( "二分探索マクロにミスがある可能性があります。変更前の版に戻してください。" ); \ ANSWER = MAXIMUM + 1; \ } else { \ CERR( "二分探索終了:" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS" ); \ CERR( "二分探索が成功したかを確認するために" , #EXPRESSION , "を計算します。" ); \ CERR( "成功判定が不要な場合はこの計算を削除しても構いません。" ); \ EXPRESSION_BS = ( EXPRESSION ); \ CERR( "二分探索結果:" , #EXPRESSION , "=" , EXPRESSION_BS , ( EXPRESSION_BS > CO_TARGET_BS ? ">" : EXPRESSION_BS < CO_TARGET_BS ? "<" : "=" ) , CO_TARGET_BS ); \ if( EXPRESSION_BS DESIRED_INEQUALITY CO_TARGET_BS ){ \ CERR( "二分探索成功:" , #ANSWER , ":=" , ANSWER ); \ } else { \ CERR( "二分探索失敗:" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \ CERR( "単調でないか、単調増加性と単調減少性を逆にしてしまったか、探索範囲内に解が存在しません。" ); \ ANSWER = MAXIMUM + 1; \ } \ } \ } \ // 単調増加の時にEXPRESSION >= CO_TARGETの最小解を格納。 #define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , >= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) // 単調増加の時にEXPRESSION <= CO_TARGETの最大解を格納。 #define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , > , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) // 単調減少の時にEXPRESSION >= CO_TARGETの最大解を格納。 #define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , < , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) // 単調減少の時にEXPRESSION <= CO_TARGETの最小解を格納。 #define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , <= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) // t以下の値が存在すればその最大値のiterator、存在しなければend()を返す。 TE IN TY set::iterator MaximumLeq(set& S,CO T& t){CO auto EN = S.EN();if(S.empty()){RE EN;}auto IT = S.upper_bound(t);RE IT == EN?S.find(*(S.rBE())):IT == S.BE()?EN:--IT;} // t未満の値が存在すればその最大値のiterator、存在しなければend()を返す。 TE IN TY set::iterator MaximumLt(set& S,CO T& t){CO auto EN = S.EN();if(S.empty()){RE EN;}auto IT = S.lower_bound(t);RE IT == EN?S.find(*(S.rBE())):IT == S.BE()?EN:--IT;} // t以上の値が存在すればその最小値のiterator、存在しなければend()を返す。 TE IN TY set::iterator MinimumGeq(set& S,CO T& t){RE S.lower_bound(t);} // tより大きい値が存在すればその最小値のiterator、存在しなければend()を返す。 TE IN TY set::iterator MinimumGt(set& S,CO T& t){RE S.upper_bound(t);} // 尺取り法用 // VAR_TPAがINITからUPDATEを繰り返しCONTINUE_CONDITIONを満たす限り、ON_CONDITIONを判定して // trueならON、falseならOFFとなる。直近のONの区間を[VAR_TPA_L,VAR_TPA_R)で管理する。 #define TPA( VAR_TPA , INIT , UPDATE , CONTINUE_CONDITION , ON_CONDITION , ONON , ONOFF , OFFON , OFFOFF , FINISH ) \ { \ auto VAR_TPA = INIT; \ auto VAR_TPA ## _L = VAR_TPA; \ auto VAR_TPA ## _R = VAR_TPA; \ bool on_TPA = false; \ int state_TPA = 3; \ WH( CONTINUE_CONDITION ){ \ bool on_TPA_next = ON_CONDITION; \ state_TPA = ( ( on_TPA ? 1 : 0 ) << 1 ) | ( on_TPA_next ? 1 : 0 ); \ CERR( "尺取り中: [L,R) = [" , VAR_TPA ## _L , "," , VAR_TPA ## _R , ") ," , #VAR_TPA , "=" , VAR_TPA , "," , ( ( state_TPA >> 1 ) & 1 ) == 1 ? "on" : "off" , " ->" , ( state_TPA & 1 ) == 1 ? "on" : "off" ); \ if( state_TPA == 0 ){ \ OFFOFF; VAR_TPA ## _L = VAR_TPA ## _R = VAR_TPA; UPDATE; \ } else if( state_TPA == 1 ){ \ OFFON; VAR_TPA ## _L = VAR_TPA; UPDATE; VAR_TPA ## _R = VAR_TPA; \ } else if( state_TPA == 2 ){ \ ONOFF; VAR_TPA ## _L = VAR_TPA ## _R = VAR_TPA; UPDATE; \ } else { \ ONON; UPDATE; VAR_TPA ## _R = VAR_TPA; \ } \ on_TPA = on_TPA_next; \ } \ CERR( "尺取り終了: [L,R) = [" , VAR_TPA ## _L , "," , VAR_TPA ## _R , ") ," , #VAR_TPA , "=" , VAR_TPA ); \ FINISH; \ } \ // データ構造用 TE TY V> IN auto OP+(CO V& a0,CO V& a1)-> decldecay_t((declval>().push_back(declval()),a0)){if(a0.empty()){RE a1;}if(a1.empty()){RE a0;}AS(a0.SZ()== a1.SZ());V AN{};for(auto IT0 = a0.BE(),IT1 = a1.BE(),EN0 = a0.EN();IT0 != EN0;IT0++,IT1++){AN.push_back(*IT0 + *IT1);}RE AN;} TE IN pair OP+(CO pair& t0,CO pair& t1){RE{t0.first + t1.first,t0.second + t1.second};} TE IN tuple OP+(CO tuple& t0,CO tuple& t1){RE{get<0>(t0)+ get<0>(t1),get<1>(t0)+ get<1>(t1),get<2>(t0)+ get<2>(t1)};} TE IN tuple OP+(CO tuple& t0,CO tuple& t1){RE{get<0>(t0)+ get<0>(t1),get<1>(t0)+ get<1>(t1),get<2>(t0)+ get<2>(t1),get<3>(t0)+ get<3>(t1)};} TE IN T Addition(CO T& t0,CO T& t1){RE t0 + t1;} TE IN T Xor(CO T& t0,CO T& t1){RE t0 ^ t1;} TE IN T MU(CO T& t0,CO T& t1){RE t0 * t1;} TE IN CO T& Zero(){ST CO T z{};RE z;} TE IN CO T& One(){ST CO T o = 1;RE o;}TE IN T AdditionInv(CO T& t){RE -t;} TE IN T Id(CO T& v){RE v;} TE IN T Min(CO T& a,CO T& b){RE a < b?a:b;} TE IN T Max(CO T& a,CO T& b){RE a < b?b:a;} // グラフ用 TE TY V> IN auto Get(CO V& a){RE[&](CRI i = 0){RE a[i];};} TE IN VE id(CRI SZ){VE AN(SZ);FOR(i,0,SZ){AN[i]= i;}RE AN;} // グリッド問題用 int H,W,H_minus,W_minus,HW; VE wall_str;VE > non_wall; char walkable = '.',unwalkable = '#'; IN T2 EnumHW(CRI v){RE{v / W,v % W};} IN int EnumHW_inv(CO T2& ij){auto&[i,j]= ij;RE i * W + j;} CO string direction[4]={"U","R","D","L"}; IN int DirectionNumberOnGrid(CRI i,CRI j,CRI k,CRI h){RE ik?0:jh?3:(AS(false),-1);} IN int DirectionNumberOnGrid(CRI v,CRI w){auto[i,j]=EnumHW(v);auto[k,h]=EnumHW(w);RE DirectionNumberOnGrid(i,j,k,h);} IN int ReverseDirectionNumberOnGrid(CRI n){AS(0<=n&&n<4);RE(n+2)%4;} IN VE EdgeOnGrid(CRI v){VEAN{};auto[i,j]=EnumHW(v);if(i>0&&wall_str[i-1][j]==walkable){AN.push_back(EnumHW_inv({i-1,j}));}if(i+10&&wall_str[i][j-1]==walkable){AN.push_back(EnumHW_inv({i,j-1}));}if(j+1 WeightedEdgeOnGrid(CRI v){VEAN{};auto[i,j]=EnumHW(v);if(i>0&&wall_str[i-1][j]==walkable){AN.push_back({EnumHW_inv({i-1,j}),1});}if(i+10&&wall_str[i][j-1]==walkable){AN.push_back({EnumHW_inv({i,j-1}),1});}if(j+1& S){if(S.empty()){S.reSZ(H);}cin>>S[i];AS(int(S[i].SZ())==W);} IN VO SetWallOnGrid(CRI i,VE>& b){if(b.empty()){b.reSZ(H,VE(W));}auto&S_i=wall_str[i];auto&b_i=b[i];FOR(j,0,W){b_i[j]=S_i[j]==walkable?false:(AS(S_i[j]==unwalkable),true);}} // デバッグ用 #ifdef DEBUG IN VO AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); } VO AutoCheck( int& exec_mode , CO bool& use_getline ); IN VO Solve(); IN VO Experiment(); IN VO SmallTest(); IN VO RandomTest(); ll GetRand( CRL Rand_min , CRL Rand_max ); IN VO BreakPoint( CRI LINE ) {} int exec_mode; CEXPR( int , solve_mode , 0 ); CEXPR( int , sample_debug_mode , 1 ); CEXPR( int , submission_debug_mode , 2 ); CEXPR( int , library_search_mode , 3 ); CEXPR( int , experiment_mode , 4 ); CEXPR( int , small_test_mode , 5 ); CEXPR( int , random_test_mode , 6 ); #ifdef USE_GETLINE CEXPR( bool , use_getline , true ); #else CEXPR( bool , use_getline , false ); #endif #else ll GetRand( CRL Rand_min , CRL Rand_max ) { ll answer = time( NULL ); RE answer * rand() % ( Rand_max + 1 - Rand_min ) + Rand_min; } #endif // VVV 常設ライブラリは以下に挿入する。 // Map (1KB) // c:/Users/user/Documents/Programming/Mathematics/Function/Map/compress.txt CL is_ordered{PU:is_ordered()= delete;TE ST CE auto Check(CO T& t)-> decltype(t < t,true_type());ST CE false_type Check(...);TE ST CE CO bool value = is_same_v< decltype(Check(declval())),true_type >;}; TE US Map = conditional_t>,unordered_map,conditional_t,map,VO>>; // Algebra (4KB) // c:/Users/user/Documents/Programming/Mathematics/Algebra/compress.txt #define DC_OF_CPOINT(POINT)IN CO U& POINT()CO NE #define DC_OF_POINT(POINT)IN U& POINT()NE #define DF_OF_CPOINT(POINT)TE IN CO U& VirtualPointedSet::POINT()CO NE{RE Point();} #define DF_OF_POINT(POINT)TE IN U& VirtualPointedSet::POINT()NE{RE Point();} TE CL UnderlyingSet{PU:US type = U;};TE CL VirtualPointedSet:VI PU UnderlyingSet{PU:VI CO U& Point()CO NE = 0;VI U& Point()NE = 0;DC_OF_CPOINT(Unit);DC_OF_CPOINT(Zero);DC_OF_CPOINT(One);DC_OF_CPOINT(Infty);DC_OF_POINT(init);DC_OF_POINT(root);};TE CL PointedSet:VI PU VirtualPointedSet{PU:U m_b_U;IN PointedSet(U b_u = U());IN CO U& Point()CO NE;IN U& Point()NE;};TE CL VirtualNSet:VI PU UnderlyingSet{PU:VI U Transfer(CO U& u)= 0;IN U Inverse(CO U& u);};TE CL AbstractNSet:VI PU VirtualNSet{PU:F_U m_f_U;IN AbstractNSet(F_U f_U);IN U Transfer(CO U& u);};TE CL VirtualMagma:VI PU UnderlyingSet{PU:VI U Product(U u0,CO U& u1)= 0;IN U Sum(U u0,CO U& u1);};TE CL AdditiveMagma:VI PU VirtualMagma{PU:IN U Product(U u0,CO U& u1);};TE CL MultiplicativeMagma:VI PU VirtualMagma{PU:IN U Product(U u0,CO U& u1);};TE CL AbstractMagma:VI PU VirtualMagma{PU:M_U m_m_U;IN AbstractMagma(M_U m_U);IN U Product(U u0,CO U& u1);}; TE IN PointedSet::PointedSet(U b_U):m_b_U(MO(b_U)){}TE IN CO U& PointedSet::Point()CO NE{RE m_b_U;}TE IN U& PointedSet::Point()NE{RE m_b_U;}DF_OF_CPOINT(Unit);DF_OF_CPOINT(Zero);DF_OF_CPOINT(One);DF_OF_CPOINT(Infty);DF_OF_POINT(init);DF_OF_POINT(root);TE IN AbstractNSet::AbstractNSet(F_U f_U):m_f_U(MO(f_U)){ST_AS(is_invocable_r_v);}TE IN U AbstractNSet::Transfer(CO U& u){RE m_f_U(u);}TE IN U VirtualNSet::Inverse(CO U& u){RE Transfer(u);}TE IN AbstractMagma::AbstractMagma(M_U m_U):m_m_U(MO(m_U)){ST_AS(is_invocable_r_v);}TE IN U AdditiveMagma::Product(U u0,CO U& u1){RE MO(u0 += u1);}TE IN U MultiplicativeMagma::Product(U u0,CO U& u1){RE MO(u0 *= u1);}TE IN U AbstractMagma::Product(U u0,CO U& u1){RE m_m_U(MO(u0),u1);}TE IN U VirtualMagma::Sum(U u0,CO U& u1){RE Product(MO(u0),u1);}TE CL VirtualMonoid:VI PU VirtualMagma,VI PU VirtualPointedSet{};TE CL AdditiveMonoid:VI PU VirtualMonoid,PU AdditiveMagma,PU PointedSet{};TE CL MultiplicativeMonoid:VI PU VirtualMonoid,PU MultiplicativeMagma,PU PointedSet{PU:IN MultiplicativeMonoid(U e_U);};TE CL AbstractMonoid:VI PU VirtualMonoid,PU AbstractMagma,PU PointedSet{PU:IN AbstractMonoid(M_U m_U,U e_U);};TE IN MultiplicativeMonoid::MultiplicativeMonoid(U e_U):PointedSet(MO(e_U)){}TE IN AbstractMonoid::AbstractMonoid(M_U m_U,U e_U):AbstractMagma(MO(m_U)),PointedSet(MO(e_U)){}TE CL VirtualGroup:VI PU VirtualMonoid,VI PU VirtualPointedSet,VI PU VirtualNSet{};TE CL AdditiveGroup:VI PU VirtualGroup,PU AdditiveMonoid{PU:IN U Transfer(CO U& u);};TE CL AbstractGroup:VI PU VirtualGroup,PU AbstractMonoid,PU AbstractNSet{PU:IN AbstractGroup(M_U m_U,U e_U,I_U i_U);};TE IN AbstractGroup::AbstractGroup(M_U m_U,U e_U,I_U i_U):AbstractMonoid(MO(m_U),MO(e_U)),AbstractNSet(MO(i_U)){}TE IN U AdditiveGroup::Transfer(CO U& u){RE -u;} // Graph (5KB) // c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/compress.txt TE CL VirtualGraph:VI PU UnderlyingSet{PU:VI R1 Enumeration(CRI i)= 0;IN R2 Enumeration_inv(CO T& t);TE IN R2 Enumeration_inv(CO PATH& p);IN VO Reset();VI CRI SZ()CO NE = 0;VI E& edge()NE = 0;VI ret_t Edge(CO T& t)= 0;VI IN R2 Enumeration_inv_Body(CO T& t)= 0;};TE CL EdgeImplimentation:VI PU VirtualGraph{PU:int m_SZ;E m_edge;IN EdgeImplimentation(CRI SZ,E edge);IN CRI SZ()CO NE;IN E& edge()NE;IN ret_t Edge(CO T& t);};TE CL Graph:PU EdgeImplimentation{PU:IN Graph(CRI SZ,E edge);IN CRI Enumeration(CRI i);TE IN Graph GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CRI t);};TE CL EnumerationGraph:PU EdgeImplimentation,ret_t,E>{PU:Enum_T m_enum_T;Enum_T_inv m_enum_T_inv;IN EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge);IN ret_t Enumeration(CRI i);TE IN EnumerationGraph GetGraph(F edge)CO;IN ret_t Enumeration_inv_Body(CO T& t);};TE EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge)-> EnumerationGraph()(0)),Enum_T,Enum_T_inv,E>;TE CL MemorisationGraph:PU EdgeImplimentation{PU:int m_LE;VE m_memory;Map m_memory_inv;IN MemorisationGraph(CRI SZ,E edge);IN T Enumeration(CRI i);IN VO Reset();TE IN MemorisationGraph GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CO T& t);};TE MemorisationGraph(CRI SZ,E edge)-> MemorisationGraph()().back()),E>;TE MemorisationGraph(CRI SZ,E edge)-> MemorisationGraph(declval()().back())),E>; TE IN EdgeImplimentation::EdgeImplimentation(CRI SZ,E edge):m_SZ(SZ),m_edge(MO(edge)){ST_AS(is_COructible_v && is_COructible_v && is_invocable_v);}TE IN Graph::Graph(CRI SZ,E edge):EdgeImplimentation(SZ,MO(edge)){}TE IN EnumerationGraph::EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge):EdgeImplimentation,ret_t,E>(SZ,MO(edge)),m_enum_T(MO(enum_T)),m_enum_T_inv(MO(enum_T_inv)){}TE IN MemorisationGraph::MemorisationGraph(CRI SZ,E edge):EdgeImplimentation(SZ,MO(edge)),m_LE(),m_memory(),m_memory_inv(){ST_AS(is_invocable_v && is_invocable_v);}TE IN CRI Graph::Enumeration(CRI i){RE i;}TE IN ret_t EnumerationGraph::Enumeration(CRI i){RE m_enum_T(i);}TE IN T MemorisationGraph::Enumeration(CRI i){AS(0 <= i && i < m_LE);RE m_memory[i];}TE IN R2 VirtualGraph::Enumeration_inv(CO T& t){RE Enumeration_inv_Body(t);}TE TE IN R2 VirtualGraph::Enumeration_inv(CO PATH& p){RE Enumeration_inv_Body(get<0>(p));}TE IN CRI Graph::Enumeration_inv_Body(CRI i){RE i;}TE IN ret_t EnumerationGraph::Enumeration_inv_Body(CO T& t){RE m_enum_T_inv(t);}TE IN CRI MemorisationGraph::Enumeration_inv_Body(CO T& t){if(m_memory_inv.count(t)== 0){AS(m_LE < TH->SZ());m_memory.push_back(t);RE m_memory_inv[t]= m_LE++;}RE m_memory_inv[t];}TE VO VirtualGraph::Reset(){}TE IN VO MemorisationGraph::Reset(){m_LE = 0;m_memory.clear();m_memory_inv.clear();}TE IN CRI EdgeImplimentation::SZ()CO NE{RE m_SZ;}TE IN E& EdgeImplimentation::edge()NE{RE m_edge;}TE IN ret_t EdgeImplimentation::Edge(CO T& t){RE m_edge(t);}TE TE IN Graph Graph::GetGraph(F edge)CO{RE Graph(TH->SZ(),MO(edge));}TE TE IN EnumerationGraph EnumerationGraph::GetGraph(F edge)CO{RE EnumerationGraph(TH->SZ(),m_enum_T,m_enum_T_inv,MO(edge));}TE TE IN MemorisationGraph MemorisationGraph::GetGraph(F edge)CO{RE MemorisationGraph(TH->SZ(),MO(edge));} // ConstexprModulo (7KB) // c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Mod/ConstexprModulo/compress.txt #define RP Represent #define DeRP Derepresent CEXPR(uint,P,998244353); TE CE INT RS(INT n)NE{RE MO(n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n < INT(M)?n:n %= M);}TE CE INT& RSP(INT& n)NE{CE CO uint trunc =(1 << 23)- 1;INT n_u = n >> 23;n &= trunc;INT n_uq =(n_u / 7)/ 17;n_u -= n_uq * 119;n += n_u << 23;RE n < n_uq?n += P - n_uq:n -= n_uq;} #define DC_OF_CM_FOR_MOD(OPR)CE bool OP OPR(CO Mod& n)CO NE #define DC_OF_AR_FOR_MOD(OPR,EX)CE Mod OP OPR(Mod n)CO EX; #define DF_OF_CM_FOR_MOD(OPR)TE CE bool Mod::OP OPR(CO Mod& n)CO NE{RE m_n OPR n.m_n;} #define DF_OF_AR_FOR_MOD(OPR,EX,LEFT,OPR2)TE CE Mod Mod::OP OPR(Mod n)CO EX{RE MO(LEFT OPR2 ## = *TH);}TE CE Mod OP OPR(T n0,CO Mod& n1)EX{RE MO(Mod(MO(n0))OPR ## = n1);} TE CL Mod{PU:uint m_n;CE Mod()NE;CE Mod(CO Mod& n)NE;CE Mod(Mod&& n)NE;TE CE Mod(T n)NE;CE Mod& OP=(Mod n)NE;CE Mod& OP+=(CO Mod& n)NE;CE Mod& OP-=(CO Mod& n)NE;CE Mod& OP*=(CO Mod& n)NE;IN Mod& OP/=(Mod n);TE CE Mod& OP<<=(INT n);TE CE Mod& OP>>=(INT n);CE Mod& OP++()NE;CE Mod OP++(int)NE;CE Mod& OP--()NE;CE Mod OP--(int)NE;DC_OF_CM_FOR_MOD(==);DC_OF_CM_FOR_MOD(!=);DC_OF_CM_FOR_MOD(<);DC_OF_CM_FOR_MOD(<=);DC_OF_CM_FOR_MOD(>);DC_OF_CM_FOR_MOD(>=);DC_OF_AR_FOR_MOD(+,NE);DC_OF_AR_FOR_MOD(-,NE);DC_OF_AR_FOR_MOD(*,NE);DC_OF_AR_FOR_MOD(/,);TE CE Mod OP^(INT EX)CO;TE CE Mod OP<<(INT n)CO;TE CE Mod OP>>(INT n)CO;CE Mod OP-()CO NE;CE Mod& SignInvert()NE;IN Mod& Invert();TE CE Mod& PW(INT EX);CE VO swap(Mod& n)NE;CE CO uint& RP()CO NE;ST CE Mod DeRP(CO uint& n)NE;ST IN CO Mod& Inverse(CO uint& n);ST IN CO Mod& Factorial(CO uint& n);ST IN CO Mod& FactorialInverse(CO uint& n);ST IN Mod Combination(CO uint& n,CO uint& i);ST IN CO Mod& zero()NE;ST IN CO Mod& one()NE;TE CE Mod& PositivePW(INT EX)NE;TE CE Mod& NonNegativePW(INT EX)NE;TE CE Mod& Ref(T&& n)NE;ST CE uint& Normalise(uint& n)NE;}; US MP = Mod

; TE CL Mod;TE CL COantsForMod{PU:COantsForMod()= delete;ST CE CO uint g_memory_bound = #ifdef DEBUG 1e3; #else 1e6; #endif ST CE CO uint g_memory_LE = M < g_memory_bound?M:g_memory_bound;ST CE uint g_M_minus = M - 1;ST CE uint g_M_minus_2 = M - 2;ST CE uint g_M_minus_2_neg = 2 - M;}; TE CE Mod::Mod()NE:m_n(){}TE CE Mod::Mod(CO Mod& n)NE:m_n(n.m_n){}TE CE Mod::Mod(Mod&& n)NE:m_n(MO(n.m_n)){}TE TE CE Mod::Mod(T n)NE:m_n(RS(MO(n))){ST_AS(is_COructible_v >);}TE CE Mod& Mod::OP=(Mod n)NE{RE Ref(m_n = MO(n.m_n));}TE CE Mod& Mod::OP+=(CO Mod& n)NE{RE Ref(Normalise(m_n += n.m_n));}TE CE Mod& Mod::OP-=(CO Mod& n)NE{RE Ref(m_n < n.m_n?(m_n += M)-= n.m_n:m_n -= n.m_n);}TE CE Mod& Mod::OP*=(CO Mod& n)NE{RE Ref(m_n = RS(ull(m_n)* n.m_n));}TE <> CE MP& MP::OP*=(CO MP& n)NE{ull m_n_copy = m_n;RE Ref(m_n = MO((m_n_copy *= n.m_n)< P?m_n_copy:RSP(m_n_copy)));}TE IN Mod& Mod::OP/=(Mod n){RE OP*=(n.Invert());}TE TE CE Mod& Mod::OP<<=(INT n){AS(n >= 0);RE *TH *= Mod(2).NonNegativePW(MO(n));}TE TE CE Mod& Mod::OP>>=(INT n){AS(n >=0);WH(n-- > 0){((m_n & 1)== 0?m_n:m_n += M)>>= 1;}RE *TH;}TE CE Mod& Mod::OP++()NE{RE Ref(m_n < COantsForMod::g_M_minus?++m_n:m_n = 0);}TE CE Mod Mod::OP++(int)NE{Mod n{*TH};OP++();RE n;}TE CE Mod& Mod::OP--()NE{RE Ref(m_n == 0?m_n = COantsForMod::g_M_minus:--m_n);}TE CE Mod Mod::OP--(int)NE{Mod n{*TH};OP--();RE n;}DF_OF_CM_FOR_MOD(==);DF_OF_CM_FOR_MOD(!=);DF_OF_CM_FOR_MOD(>);DF_OF_CM_FOR_MOD(>=);DF_OF_CM_FOR_MOD(<);DF_OF_CM_FOR_MOD(<=);DF_OF_AR_FOR_MOD(+,NE,n,+);DF_OF_AR_FOR_MOD(-,NE,n.SignInvert(),+);DF_OF_AR_FOR_MOD(*,NE,n,*);DF_OF_AR_FOR_MOD(/,,n.Invert(),*);TE TE CE Mod Mod::OP^(INT EX)CO{RE MO(Mod(*TH).PW(MO(EX)));}TE TE CE Mod Mod::OP<<(INT n)CO{RE MO(Mod(*TH)<<= MO(n));}TE TE CE Mod Mod::OP>>(INT n)CO{RE MO(Mod(*TH)>>= MO(n));}TE CE Mod Mod::OP-()CO NE{RE MO(Mod(*TH).SignInvert());}TE CE Mod& Mod::SignInvert()NE{RE Ref(m_n > 0?m_n = M - m_n:m_n);}TE IN Mod& Mod::Invert(){AS(m_n != 0);uint m_n_neg;RE m_n < COantsForMod::g_memory_LE?Ref(m_n = Inverse(m_n).m_n):((m_n_neg = M - m_n)< COantsForMod::g_memory_LE)?Ref(m_n = M - Inverse(m_n_neg).m_n):PositivePW(uint(COantsForMod::g_M_minus_2));}TE TE CE Mod& Mod::PositivePW(INT EX)NE{Mod PW{*TH};EX--;WH(EX != 0){(EX & 1)== 1?*TH *= PW:*TH;EX >>= 1;PW *= PW;}RE *TH;}TE TE CE Mod& Mod::NonNegativePW(INT EX)NE{RE EX == 0?Ref(m_n = 1):Ref(PositivePW(MO(EX)));}TE TE CE Mod& Mod::PW(INT EX){bool neg = EX < 0;AS(!(neg && m_n == 0));RE neg?PositivePW(MO(EX *= COantsForMod::g_M_minus_2_neg)):NonNegativePW(MO(EX));}TE CE VO Mod::swap(Mod& n)NE{std::swap(m_n,n.m_n);}TE IN CO Mod& Mod::Inverse(CO uint& n){AS(n < COantsForMod::g_memory_LE);ST Mod memory[COantsForMod::g_memory_LE]={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr].m_n = M - memory[M % LE_curr].m_n * ull(M / LE_curr)% M;LE_curr++;}RE memory[n];}TE IN CO Mod& Mod::Factorial(CO uint& n){AS(n < COantsForMod::g_memory_LE);ST Mod memory[COantsForMod::g_memory_LE]={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){(memory[LE_curr]= memory[LE_curr - 1])*= LE_curr;LE_curr++;}RE memory[n];}TE IN CO Mod& Mod::FactorialInverse(CO uint& n){ST Mod memory[COantsForMod::g_memory_LE]={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){(memory[LE_curr]= memory[LE_curr - 1])*= Inverse(LE_curr);LE_curr++;}RE memory[n];}TE IN Mod Mod::Combination(CO uint& n,CO uint& i){RE i <= n?Factorial(n)* FactorialInverse(i)* FactorialInverse(n - i):zero();}TE CE CO uint& Mod::RP()CO NE{RE m_n;}TE CE Mod Mod::DeRP(CO uint& n)NE{Mod n_copy{};n_copy.m_n = n;RE n_copy;}TE IN CO Mod& Mod::zero()NE{ST CE CO Mod z{};RE z;}TE IN CO Mod& Mod::one()NE{ST CE CO Mod o{1};RE o;}TE TE CE Mod& Mod::Ref(T&& n)NE{RE *TH;}TE CE uint& Mod::Normalise(uint& n)NE{RE n < M?n:n -= M;}TE IN Mod Inverse(CO Mod& n){RE MO(Mod(n).Invert());}TE CE Mod Inverse_CE(Mod n)NE{RE MO(n.NonNegativePW(M - 2));}TE CE Mod PW(Mod n,INT EX){RE MO(n.PW(MO(EX)));}TE CE VO swap(Mod& n0,Mod& n1)NE{n0.swap(n1);}TE IN string to_string(CO Mod& n)NE{RE to_string(n.RP())+ " + " + to_string(M)+ "Z";}TE IN basic_istream& OP>>(basic_istream& is,Mod& n){ll m;is >> m;n = m;RE is;}TE IN basic_ostream& OP<<(basic_ostream& os,CO Mod& n){RE os << n.RP();} // AAA 常設ライブラリは以上に挿入する。 #define INCLUDE_LIBRARY #include __FILE__ #endif // INCLUDE_LIBRARY #endif // INCLUDE_SUB #endif // INCLUDE_MAIN