#include using ll = long long; using std::cin; using std::cout; using std::endl; std::mt19937 rnd(std::chrono::steady_clock::now().time_since_epoch().count()); template inline bool chmax(T &a, T b) { if (a < b) { a = b; return 1; } return 0; } template inline bool chmin(T &a, T b) { if (a > b) { a = b; return 1; } return 0; } constexpr int inf = (int)1e9 + 7; constexpr long long INF = 1LL << 60; template struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if ((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int)(1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; std::swap(a -= t * b, b); std::swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend std::ostream &operator<<(std::ostream &os, const ModInt &p) { return os << p.x; } friend std::istream &operator>>(std::istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt(t); return (is); } static int get_mod() { return mod; } }; constexpr int mod = 998244353; using mint = ModInt; void solve() { ll P1_, P2_, Q1_, Q2_, T; cin >> P1_ >> P2_ >> Q1_ >> Q2_ >> T; mint p = mint(P1_) / mint(P2_); mint q = mint(Q1_) / mint(Q2_); // dp[x] := 残り時間が x に生まれたときの期待値 // dp[x] := p*dp[x-1] + q*p*dp[x-2] + q^3*p*dp[x-3] + ... + q^{(x-1)*x/2}*p*dp[0] + q^{(x+1)*x/2} std::vector dp(T + 1); dp[0] = 1; for (int i = 1; i <= T; i++) { for (int j = 1; j <= i; j++) { dp[i] += q.pow((ll)j * (j - 1) / 2) * p * dp[i - j]; } dp[i] += q.pow((ll)i * (i + 1) / 2); } cout << dp[T] << "\n"; } int main() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); int kkt = 1; // cin >> kkt; while (kkt--) { solve(); } }