// -*- coding:utf-8-unix -*- // #![feature(map_first_last)] #![allow(dead_code)] #![allow(unused_imports)] #![allow(unused_macros)] // use core::num; use std::cmp::*; use std::fmt::*; use std::hash::*; use std::iter::FromIterator; use std::*; use std::{cmp, collections, fmt, io, iter, ops, str}; const INF: i64 = 1223372036854775807; const UINF: usize = INF as usize; const LINF: i64 = 2147483647; const INF128: i128 = 1223372036854775807000000000000; const MOD1: i64 = 1000000007; const MOD9: i64 = 998244353; const MOD: i64 = MOD9; // const MOD: i64 = MOD2; const UMOD: usize = MOD as usize; const M_PI: f64 = 3.14159265358979323846; // use proconio::input; // const MOD: i64 = INF; use cmp::Ordering::*; use std::collections::*; use std::io::stdin; use std::io::stdout; use std::io::Write; macro_rules! p { ($x:expr) => { //if expr println!("{}", $x); }; } macro_rules! vp { // vector print separate with space ($x:expr) => { println!( "{}", $x.iter() .map(|x| x.to_string()) .collect::>() .join(" ") ); }; } macro_rules! d { ($x:expr) => { eprintln!("{:?}", $x); }; } macro_rules! yn { ($val:expr) => { if $val { println!("Yes"); } else { println!("No"); } }; } macro_rules! map{ // declear btreemap ($($key:expr => $val:expr),*) => { { let mut map = ::std::collections::BTreeMap::new(); $( map.insert($key, $val); )* map } }; } macro_rules! set{ // declear btreemap ($($key:expr),*) => { { let mut set = ::std::collections::BTreeSet::new(); $( set.insert($key); )* set } }; } fn main() { solve(); } // use str::Chars; #[allow(dead_code)] fn read() -> T { let mut s = String::new(); std::io::stdin().read_line(&mut s).ok(); s.trim().parse().ok().unwrap() } #[allow(dead_code)] fn read_vec() -> Vec { read::() .split_whitespace() .map(|e| e.parse().ok().unwrap()) .collect() } #[allow(dead_code)] fn read_mat(n: u32) -> Vec> { (0..n).map(|_| read_vec()).collect() } #[allow(dead_code)] fn readii() -> (i64, i64) { let mut vec: Vec = read_vec(); (vec[0], vec[1]) } #[allow(dead_code)] fn readiii() -> (i64, i64, i64) { let mut vec: Vec = read_vec(); (vec[0], vec[1], vec[2]) } #[allow(dead_code)] fn readuu() -> (usize, usize) { let mut vec: Vec = read_vec(); (vec[0], vec[1]) } #[allow(dead_code)] fn readff() -> (f64, f64) { let mut vec: Vec = read_vec(); (vec[0], vec[1]) } fn readcc() -> (char, char) { let mut vec: Vec = read_vec(); (vec[0], vec[1]) } fn readuuu() -> (usize, usize, usize) { let mut vec: Vec = read_vec(); (vec[0], vec[1], vec[2]) } #[allow(dead_code)] fn readiiii() -> (i64, i64, i64, i64) { let mut vec: Vec = read_vec(); (vec[0], vec[1], vec[2], vec[3]) } #[allow(dead_code)] fn readuuuu() -> (usize, usize, usize, usize) { let mut vec: Vec = read_vec(); (vec[0], vec[1], vec[2], vec[3]) } fn read_imat(h: usize) -> Vec> { (0..h).map(|_| read_vec()).collect() } fn read_cmat(h: usize) -> Vec> { (0..h).map(|_| read::().chars().collect()).collect() } macro_rules! M { (a :expr ) => { M::new({ a }) }; } fn prime_table_min(n: usize) -> Vec { let mut is_prime = vec![true; n + 1]; let mut res = vec![0 as usize; n + 1]; for i in 0..=n { res[i] = i; } let mut i = 2 as usize; while i * i <= n { if !is_prime[i] { i += 1; continue; } // println!("{:?}", "call"); // is_prime[i] = i; let mut j = i + i as usize; while j <= n { is_prime[j] = false; res[j] = min(res[j], i); j += i; } i += 1; } return res; } fn prime_factorization_osak(x: usize, table: &Vec) -> BTreeMap { let mut res: BTreeMap = BTreeMap::new(); let mut xx = x; // let mut p: usize = 2; while xx > 1 { let mut p = table[xx]; let t = res.get_mut(&p); if t.is_none() { res.insert(p, 1); } else { *t.unwrap() += 1; } xx /= table[xx]; // println!("{:?} {:?}", p, res); // p += 1; } if xx != 1 { let t = res.get_mut(&xx); if t.is_none() { res.insert(xx, 1); } else { *t.unwrap() += 1; } } res } fn solve() { let (n, k) = readuu(); let pt = prime_table_min(1010101); let mut vec: Vec = read_vec(); let mut pmap = map![]; for i in 0..n { if vec[i] > 1000000000 { if k == vec[i] { p!("Yes"); return; } } let mut p = prime_factorization_osak(vec[i], &pt); for (key, val) in p { let t = pmap.get_mut(&key).copied(); if t.is_none() { pmap.insert(key, val); } else { pmap.insert(key, max(t.unwrap(), val)); } } } let mut x = k; for (key, val) in pmap { if val == 0 { continue; } let mut cnt = 0; while x % key == 0 && cnt < val { x /= key; cnt += 1; } } yn!(x == 1); return; }