#include #include using namespace std; using namespace atcoder; istream &operator>>(istream &is, modint &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint &a) { return os << a.val(); } istream &operator>>(istream &is, modint998244353 &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint998244353 &a) { return os << a.val(); } istream &operator>>(istream &is, modint1000000007 &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint1000000007 &a) { return os << a.val(); } typedef long long ll; typedef vector> Graph; typedef pair pii; typedef pair pll; #define FOR(i,l,r) for (int i = l;i < (int)(r); i++) #define rep(i,n) for (int i = 0;i < (int)(n); i++) #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define my_sort(x) sort(x.begin(), x.end()) #define my_max(x) *max_element(all(x)) #define my_min(x) *min_element(all(x)) template inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } const int INF = (1<<30) - 1; const ll LINF = (1LL<<62) - 1; const int MOD = 998244353; const int MOD2 = 1e9+7; const double PI = acos(-1); vector di = {1,0,-1,0}; vector dj = {0,1,0,-1}; #ifdef LOCAL # include # define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__) #else # define debug(...) (static_cast(0)) #endif // A ^ N を M で割ったあまり template T pow_mod(T A, T N, T M) { T res = 1 % M; A %= M; while (N) { if (N & 1) res = (res * A) % M; A = (A * A) % M; N >>= 1; } return res; } // Miller-Rabin 素数判定 bool Miller_Rabin(long long N) { if (N <= 1) return false; if (N == 2) return true; if (N % 2 == 0) return false; vector A = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; long long s = 0, d = N - 1; while (d % 2 == 0) { ++s; d >>= 1; } for (auto a : A) { if (a % N == 0) return true; long long t, x = pow_mod<__int128_t>(a, d, N); if (x != 1) { for (t = 0; t < s; ++t) { if (x == N - 1) break; x = __int128_t(x) * x % N; } if (t == s) return false; } } return true; } long long find_prime_factor(long long n) { if (n % 2 == 0) return 2; long long m = pow(n, 0.125) + 1; for (long long c = 1; c < n; ++c) { auto f = [n, c](long long a) { return ((long long)pow(a, 2) + c) % n; }; long long y = 0; long long g = 1; long long q = 1; long long r = 1; long long k = 0; long long x, ys; while (g == 1) { x = y; while (k < (3 * r) / 4) { y = f(y); k += 1; } while (k < r && g == 1) { ys = y; for (long long i = 0; i < min(m, r - k); ++i) { y = f(y); q = (q * abs(x - y)) % n; } g = __gcd(q, n); k += m; } k = r; r *= 2; } if (g == n) { g = 1; y = ys; while (g == 1) { y = f(y); g = __gcd(abs(x - y), n); } } if (g == n) continue; if (Miller_Rabin(g)) return g; else if (Miller_Rabin(n / g)) return n / g; else return find_prime_factor(g); } return -1; } map factorize(long long n) { map res; while (!Miller_Rabin(n) && n > 1) { long long p = find_prime_factor(n); long long s = 0; while (n % p == 0) { n /= p; s += 1; } res[p] = s; } if (n > 1) res[n] = 1; return res; } int main(){ cin.tie(0); ios_base::sync_with_stdio(false); int N; cin >> N; ll K; cin >> K; vector A(N); rep(i,N) cin >> A[i]; auto facts = factorize(K); map mp; vector p; for(auto itr = facts.begin(); itr != facts.end(); itr++){ p.push_back(itr->first); } rep(i,N){ for(auto &v: p){ ll cnt = 0; while((A[i] % v) == 0){ A[i] /= v; cnt++; } mp[v] = max(mp[v], cnt); } } for(auto &v : p){ if(mp[v] < facts[v]){ cout << "No" << endl; return 0; } } cout << "Yes" << endl; }