#include #include using namespace std; using namespace atcoder; istream &operator>>(istream &is, modint &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint &a) { return os << a.val(); } istream &operator>>(istream &is, modint998244353 &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint998244353 &a) { return os << a.val(); } istream &operator>>(istream &is, modint1000000007 &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint1000000007 &a) { return os << a.val(); } typedef long long ll; typedef vector> Graph; typedef pair pii; typedef pair pll; #define FOR(i,l,r) for (int i = l;i < (int)(r); i++) #define rep(i,n) for (int i = 0;i < (int)(n); i++) #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define my_sort(x) sort(x.begin(), x.end()) #define my_max(x) *max_element(all(x)) #define my_min(x) *min_element(all(x)) template inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } const int INF = (1<<30) - 1; const ll LINF = (1LL<<62) - 1; const int MOD = 998244353; const int MOD2 = 1e9+7; const double PI = acos(-1); vector di = {1,0,-1,0}; vector dj = {0,1,0,-1}; #ifdef LOCAL # include # define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__) #else # define debug(...) (static_cast(0)) #endif // A ^ N を M で割ったあまり template T pow_mod(T A, T N, T M) { T res = 1 % M; A %= M; while (N) { if (N & 1) res = (res * A) % M; A = (A * A) % M; N >>= 1; } return res; } // Miller-Rabin 素数判定 bool Miller_Rabin(long long N) { if (N <= 1) return false; if (N == 2) return true; if (N % 2 == 0) return false; vector A = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; long long s = 0, d = N - 1; while (d % 2 == 0) { ++s; d >>= 1; } for (auto a : A) { if (a % N == 0) return true; long long t, x = pow_mod<__int128_t>(a, d, N); if (x != 1) { for (t = 0; t < s; ++t) { if (x == N - 1) break; x = __int128_t(x) * x % N; } if (t == s) return false; } } return true; } // https://qiita.com/t_fuki/items/7cd50de54d3c5d063b4a#%E3%81%AF%E3%81%98%E3%82%81%E3%81%AB long long _inner_random(long long a, long long c, long long mod){ return (((a % mod) * a) % mod + c) % mod; }; // 約数を一つ返す O(N^0.25 * logN) long long find_prime_factor(long long N){ if((N % 2) == 0) return 2; long long m = (long long)pow(N, 0.125) + 1; for(long long c = 1; c < N; c++){ long long y = 0; long long g = 1; long long q = 1; long long r = 1; long long k = 0; long long x, ys; while(g == 1){ x = y; while(k < (3 * r / 4)){ y = _inner_random(y, c, N); k++; } while(k < r && g == 1){ ys = y; for(int i = 0; i < min(m, r - k); i++){ y = _inner_random(y, c, N); q = __int128_t(q) * abs(x - y) % N; } g = __gcd(q, N); k += m; } k = r; r *= 2; } if(g == N){ g = 1; y = ys; while(g == 1){ y = _inner_random(y, c, N); g = __gcd(abs(x - y), N); } } if(g == N) continue; if(Miller_Rabin(g)) return g; else if(Miller_Rabin(N/g)) return N/g; else return find_prime_factor(g); } } // (p, cnt) map Pollard_rho(long long N){ map res; while(!Miller_Rabin(N) && N > 1){ long long p = find_prime_factor(N); long long s = 0; while((N % p) == 0){ N /= p; s++; } res[p] = s; } if(N > 1){ res[N] = 1; } return res; } int main(){ cin.tie(0); ios_base::sync_with_stdio(false); int N; cin >> N; ll K; cin >> K; vector A(N); rep(i,N) cin >> A[i]; auto facts = Pollard_rho(K); map mp; vector p; for(auto itr = facts.begin(); itr != facts.end(); itr++){ p.push_back(itr->first); mp[itr->first] = 0; } rep(i,N){ for(auto &v: p){ ll cnt = 0; while((A[i] % v) == 0){ A[i] /= v; cnt++; } mp[v] = max(mp[v], cnt); } } for(auto &v : p){ if(mp[v] < facts[v]){ cout << "No" << endl; return 0; } } cout << "Yes" << endl; }