#include #include using namespace std; using namespace atcoder; istream &operator>>(istream &is, modint &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint &a) { return os << a.val(); } istream &operator>>(istream &is, modint998244353 &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint998244353 &a) { return os << a.val(); } istream &operator>>(istream &is, modint1000000007 &a) { long long v; is >> v; a = v; return is; } ostream &operator<<(ostream &os, const modint1000000007 &a) { return os << a.val(); } typedef long long ll; typedef vector> Graph; typedef pair pii; typedef pair pll; #define FOR(i,l,r) for (int i = l;i < (int)(r); i++) #define rep(i,n) for (int i = 0;i < (int)(n); i++) #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define my_sort(x) sort(x.begin(), x.end()) #define my_max(x) *max_element(all(x)) #define my_min(x) *min_element(all(x)) template inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } const int INF = (1<<30) - 1; const ll LINF = (1LL<<62) - 1; const int MOD = 998244353; const int MOD2 = 1e9+7; const double PI = acos(-1); vector di = {1,0,-1,0}; vector dj = {0,1,0,-1}; #ifdef LOCAL # include # define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__) #else # define debug(...) (static_cast(0)) #endif // Miller-Rabin 素数判定法 template T pow_mod(T A, T N, T M) { T res = 1 % M; A %= M; while (N) { if (N & 1) res = (res * A) % M; A = (A * A) % M; N >>= 1; } return res; } bool is_prime(long long N) { if (N <= 1) return false; if (N == 2 || N == 3) return true; if (N % 2 == 0) return false; vector A = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; long long s = 0, d = N - 1; while (d % 2 == 0) { ++s; d >>= 1; } for (auto a : A) { if (a % N == 0) return true; long long t, x = pow_mod<__int128_t>(a, d, N); if (x != 1) { for (t = 0; t < s; ++t) { if (x == N - 1) break; x = __int128_t(x) * x % N; } if (t == s) return false; } } return true; } // Pollard のロー法 long long gcd(long long A, long long B) { A = abs(A), B = abs(B); if (B == 0) return A; else return gcd(B, A % B); } long long pollard(long long N) { if (N % 2 == 0) return 2; if (is_prime(N)) return N; auto f = [&](long long x) -> long long { return (__int128_t(x) * x + 1) % N; }; long long step = 0; while (true) { ++step; long long x = step, y = f(x); while (true) { long long p = gcd(y - x + N, N); if (p == 0 || p == N) break; if (p != 1) return p; x = f(x); y = f(f(y)); } } } vector prime_factorize(long long N) { if (N == 1) return {}; long long p = pollard(N); if (p == N) return {p}; vector left = prime_factorize(p); vector right = prime_factorize(N / p); left.insert(left.end(), right.begin(), right.end()); sort(left.begin(), left.end()); return left; } int main(){ cin.tie(0); ios_base::sync_with_stdio(false); int N; cin >> N; ll K; cin >> K; vector A(N); rep(i,N) cin >> A[i]; vector facts = prime_factorize(K); map mp; for(auto &x: facts) mp[x]++; map ma; rep(i,N){ for(auto itr = mp.begin(); itr != mp.end(); itr++){ long long v = itr->first; int cnt = 0; while((A[i] % v) == 0){ A[i] /= v; cnt++; } chmax(ma[v], cnt); } } bool f = true; for(auto itr = mp.begin(); itr != mp.end(); itr++){ long long v = itr->first; if(ma[v] < mp[v]) f = false; } cout << (f ? "Yes" : "No") << endl; }