#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include template std::ostream &operator<<(std::ostream &os, const std::pair &p) { os << p.first << " " << p.second; return os; } template std::istream &operator>>(std::istream &is, std::pair &p) { is >> p.first >> p.second; return is; } template std::ostream &operator<<(std::ostream &os, const std::vector &v) { for (int i = 0; i < (int)v.size(); i++) { os << v[i] << (i + 1 != (int)v.size() ? " " : ""); } return os; } template std::istream &operator>>(std::istream &is, std::vector &v) { for (T &in : v) is >> in; return is; } template struct ModInt { int x; ModInt() : x(0) {} ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if ((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int)(1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt &operator^=(long long p) { // quick_pow here:3 ModInt res = 1; for (; p; p >>= 1) { if (p & 1) res *= *this; *this *= *this; } return *this = res; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } ModInt operator^(long long p) const { return ModInt(*this) ^= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } explicit operator int() const { return x; } // added by QCFium ModInt operator=(const int p) { x = p; return ModInt(*this); } // added by QCFium ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } return ModInt(u); } friend std::ostream &operator<<(std::ostream &os, const ModInt &p) { return os << p.x; } friend std::istream &operator>>(std::istream &is, ModInt &a) { long long x; is >> x; a = ModInt(x); return (is); } }; using mint = ModInt<998244353>; const int MOD = 998244353; template std::pair, std::vector> get_prime_factor_with_kinds(T n) { std::vector prime_factors; std::vector cnt; // number of i_th factor for (T i = 2; i * i <= n; i++) { if (n % i == 0) { prime_factors.push_back(i); cnt.push_back(0); while (n % i == 0) n /= i, cnt[(int)prime_factors.size() - 1]++; } } if (n > 1) prime_factors.push_back(n), cnt.push_back(1); assert(prime_factors.size() == cnt.size()); return {prime_factors, cnt}; } template std::vector get_divisors(T x, bool sorted = true) { std::vector res; for (T i = 1; i <= x / i; i++) if (x % i == 0) { res.push_back(i); if (i != x / i) res.push_back(x / i); } if (sorted) std::sort(res.begin(), res.end()); return res; } void solve() { unsigned long long up_bound = 1e18; long long n, p, k; std::cin >> n >> p >> k; std::vector> a(n); std::cin >> a; std::vector dp(n + 1, std::vector(k + 1, 0ull)); dp[0][0] = p; for (int i = 0; i < n; i++) { for (int j = 0; j <= k; j++) { auto [t, b] = a[i]; dp[i + 1][j] = std::max(dp[i + 1][j], dp[i][j]); if (t == 1) { if (j + 1 <= k) dp[i + 1][j + 1] = std::max(dp[i + 1][j + 1], dp[i][j] + b); } else { if (j + 1 <= k) dp[i + 1][j + 1] = std::max(dp[i + 1][j + 1], dp[i][j] * 2); } if (dp[i + 1][j] > up_bound) { std::cout << -1 << '\n'; return; } } } std::cout << dp[n][k] << std::endl; } int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); int t = 1; // std::cin >> t; while (t--) { solve(); } }