using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.Globalization;
using System.IO;
using System.Linq;
using System.Numerics;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Runtime.Intrinsics.X86;
using System.Text;
using System.Threading;
namespace YukiCoder
{
class Program
{
[MethodImpl(MethodImplOptions.AggressiveOptimization)]
static void Main()
{
using var cin = new Scanner();
int n = cin.Int();
long h = cin.Long();
var a = cin.ArrayLong(n);
var b = cin.ArrayLong(n);
var sumB = new PrefixSum(b);
sumB.Build();
long ans = 0;
long manzoku = 0;
long hirou = 0;
int l = 0;
for (int r = 0; r < n; r++) {
manzoku += a[r];
hirou += (r - l + 1) * b[r];
if (hirou <= h) {
ans.UpdateMax(manzoku);
}
while (hirou > h && l <= r) {
hirou -= sumB.Sum(l, r + 1);
manzoku -= a[l];
++l;
}
ans.UpdateMax(manzoku);
}
Console.WriteLine(ans);
}
}
///
/// 前からの累積和を取るクラス
///
public class PrefixSum
{
/// 元の配列の長さ
private readonly int _n;
/// Build前は元の配列の値が、Build後は累積和の値が格納されている。
///
/// sumの計算でのif文を無くすために、元の配列のindexとは1ズレていて、1-basedで格納されている。
/// 累積後は以下の様になる。
/// [0] : ダミー(長さ0の区間の和=0に相当)
/// [1] : [0, 0]の和
/// [2] : [0, 1]の和
/// [3] : [0, 2]の和
/// :
/// [N-1] : [0, N-2]の和
/// [N] : [0, N-1]の和
///
private readonly long[] _values;
public long this[int index]
{
// 元の配列のindexとは1ズレている
set => _values[index + 1] = value;
get => _values[index + 1];
}
///
/// 配列の長さだけを指定してインスタンスを生成
///
/// 配列長
public PrefixSum(int n)
{
_n = n;
_values = new long[n + 1];
}
///
/// 累積前のインスタンスを指定してインスタンスを生成
///
///
/// 累積したい配列。
/// 中身がコピーされるので、累積和を取ったときに、ここで渡した配列自体には影響しない。
///
public PrefixSum(long[] values)
: this(values.Length)
{
// 格納インデックスを1ずらしてコピー
Array.Copy(values, 0, _values, 1, _n);
}
///
/// 累積和を取る
///
///
/// 2回以上呼び出した場合、呼び出す度に累積が行われる。
///
public void Build()
{
for (int i = 0; i < _n; i++) {
_values[i + 1] += _values[i];
}
}
///
/// 半開区間[L, R)の区間和をO(1)で計算
///
/// 区間の左端インデックス
/// 区間の右端インデックス
/// 区間和
public long Sum(int l, int r)
{
// 区間[0, R)は [0, L) + [L, R) であるため、[L, R)の和は sum[0, R) - sum[0, L) で計算出来る。
// [0, R)は半開区間なのでその和は[0, R-1]の和と等しくなるが、
// 値を格納している配列のインデックスは1つズレているので、配列に渡す値は結局Rそのままになる。
// Lも同様。
return _values[r] - _values[l];
}
///
/// 区間和が最大となる区間と和をO(N)で求める
///
///
/// l, r -> 和が最大となる半開区間[L, R)
/// sum -> 区間和
///
public (int l, int r, long sum) CalculateMaxSum()
{
// 全ての区間和を計算するとO(N^2)になるが、
// 区間の右端を決め打ったときの最適な左端をO(1)で求めることで、全体としてO(N)にする。
// Sumの実装から分かるとおり、[0, L)までの和を最小にすれば[L, R)が最大になる。
// つまり、左から順番にRを決め打っていくときに、和が最小の位置を保持しつつ計算していけばよい。
// 何も引かないことで0は達成できるので、初期値は0。
long min = 0;
int minIndex = -1;
int l = 0;
int r = 0;
long max = long.MinValue;
for (int i = 0; i < _n; ++i) {
long value = _values[i + 1];
if (value - min > max) {
max = value - min;
l = minIndex + 1; // 最小の箇所は引かれる部分なので、求めたい区間として有効なのはその1個右から
r = i;
}
if (min > value) {
minIndex = i;
min = value;
}
}
// 半開区間にするための+1
++r;
return (l, r, max);
}
///
/// 区間和が最小となる区間と和をO(N)で求める
///
///
/// l, r -> 和が最小となる半開区間[L, R)
/// sum -> 区間和
///
public (int l, int r, long sum) CalculateMinSum()
{
// CalculateMaxSumと同様に和が最大の位置を保持しつつ計算する。
long max = 0;
int maxIndex = -1;
int l = 0;
int r = 0;
long min = long.MaxValue;
for (int i = 0; i < _n; ++i) {
long value = _values[i + 1];
if (value - max < min) {
min = value - max;
l = maxIndex + 1;
r = i;
}
if (max < value) {
maxIndex = i;
max = value;
}
}
++r;
return (l, r, min);
}
}
public struct BitFlag
{
public static BitFlag Begin() => 0;
public static BitFlag End(int bitCount) => 1 << bitCount;
public static BitFlag FromBit(int bitNumber) => 1 << bitNumber;
public static BitFlag Fill(int count) => (1 << count) - 1;
public static IEnumerable All(int n)
{
for (var f = Begin(); f < End(n); ++f) {
yield return f;
}
}
private readonly int flags_;
public int Flag => flags_;
public bool this[int bitNumber] => (flags_ & (1 << bitNumber)) != 0;
public BitFlag(int flags) { flags_ = flags; }
public bool Has(BitFlag target) => (flags_ & target.flags_) == target.flags_;
public bool Has(int target) => (flags_ & target) == target;
public bool HasBit(int bitNumber) => (flags_ & (1 << bitNumber)) != 0;
public BitFlag OrBit(int bitNumber) => flags_ | (1 << bitNumber);
public BitFlag AndBit(int bitNumber) => flags_ & (1 << bitNumber);
public BitFlag XorBit(int bitNumber) => flags_ ^ (1 << bitNumber);
public BitFlag ComplementOf(BitFlag sub) => flags_ ^ sub.flags_;
public int PopCount() => BitOperations.PopCount((uint)flags_);
public static BitFlag operator ++(BitFlag src) => new BitFlag(src.flags_ + 1);
public static BitFlag operator --(BitFlag src) => new BitFlag(src.flags_ - 1);
public static BitFlag operator |(BitFlag lhs, BitFlag rhs)
=> new BitFlag(lhs.flags_ | rhs.flags_);
public static BitFlag operator |(BitFlag lhs, int rhs)
=> new BitFlag(lhs.flags_ | rhs);
public static BitFlag operator |(int lhs, BitFlag rhs)
=> new BitFlag(lhs | rhs.flags_);
public static BitFlag operator &(BitFlag lhs, BitFlag rhs)
=> new BitFlag(lhs.flags_ & rhs.flags_);
public static BitFlag operator &(BitFlag lhs, int rhs)
=> new BitFlag(lhs.flags_ & rhs);
public static BitFlag operator &(int lhs, BitFlag rhs)
=> new BitFlag(lhs & rhs.flags_);
public static BitFlag operator ^(BitFlag lhs, BitFlag rhs)
=> new BitFlag(lhs.flags_ ^ rhs.flags_);
public static BitFlag operator ^(BitFlag lhs, int rhs)
=> new BitFlag(lhs.flags_ ^ rhs);
public static BitFlag operator ^(int lhs, BitFlag rhs)
=> new BitFlag(lhs ^ rhs.flags_);
public static BitFlag operator <<(BitFlag bit, int shift) => bit.flags_ << shift;
public static BitFlag operator >>(BitFlag bit, int shift) => bit.flags_ >> shift;
public static bool operator <(BitFlag lhs, BitFlag rhs) => lhs.flags_ < rhs.flags_;
public static bool operator <(BitFlag lhs, int rhs) => lhs.flags_ < rhs;
public static bool operator <(int lhs, BitFlag rhs) => lhs < rhs.flags_;
public static bool operator >(BitFlag lhs, BitFlag rhs) => lhs.flags_ > rhs.flags_;
public static bool operator >(BitFlag lhs, int rhs) => lhs.flags_ > rhs;
public static bool operator >(int lhs, BitFlag rhs) => lhs > rhs.flags_;
public static bool operator <=(BitFlag lhs, BitFlag rhs) => lhs.flags_ <= rhs.flags_;
public static bool operator <=(BitFlag lhs, int rhs) => lhs.flags_ <= rhs;
public static bool operator <=(int lhs, BitFlag rhs) => lhs <= rhs.flags_;
public static bool operator >=(BitFlag lhs, BitFlag rhs) => lhs.flags_ >= rhs.flags_;
public static bool operator >=(BitFlag lhs, int rhs) => lhs.flags_ >= rhs;
public static bool operator >=(int lhs, BitFlag rhs) => lhs >= rhs.flags_;
public static implicit operator BitFlag(int t) => new BitFlag(t);
public static implicit operator int(BitFlag t) => t.flags_;
public override string ToString() => $"{Convert.ToString(flags_, 2).PadLeft(32, '0')} ({flags_})";
public SubBitsEnumerator SubBits => new SubBitsEnumerator(flags_);
public struct SubBitsEnumerator : IEnumerable
{
private readonly int flags_;
public SubBitsEnumerator(int flags)
{
flags_ = flags;
}
IEnumerator IEnumerable.GetEnumerator() => new Enumerator(flags_);
IEnumerator IEnumerable.GetEnumerator() => new Enumerator(flags_);
public Enumerator GetEnumerator() => new Enumerator(flags_);
public struct Enumerator : IEnumerator
{
private readonly int src_;
public BitFlag Current { get; private set; }
object IEnumerator.Current => Current;
public Enumerator(int flags)
{
src_ = flags;
Current = flags + 1;
}
public void Dispose() { }
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public bool MoveNext() => (Current = --Current & src_) > 0;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Reset() => Current = src_;
}
}
}
public class HashMap : Dictionary
{
public static HashMap Merge(
HashMap src1,
HashMap src2,
Func mergeValues)
{
if (src1.Count < src2.Count) {
(src1, src2) = (src2, src1);
}
foreach (var key in src2.Keys) {
src1[key] = mergeValues(src1[key], src2[key]);
}
return src1;
}
private readonly Func initialzier_;
public HashMap(Func initialzier)
: base()
{
initialzier_ = initialzier;
}
public HashMap(Func initialzier, int capacity)
: base(capacity)
{
initialzier_ = initialzier;
}
new public TValue this[TKey key]
{
get
{
if (TryGetValue(key, out TValue value)) {
return value;
} else {
var init = initialzier_(key);
base[key] = init;
return init;
}
}
set { base[key] = value; }
}
public HashMap Merge(
HashMap src,
Func mergeValues)
{
foreach (var key in src.Keys) {
this[key] = mergeValues(this[key], src[key]);
}
return this;
}
}
public class JagList2 where T : struct
{
private readonly int n_;
private readonly List[] tempValues_;
private T[][] values_;
public int Count => n_;
public List[] Raw => tempValues_;
public T[][] Values => values_;
public T[] this[int index] => values_[index];
public JagList2(int n)
{
n_ = n;
tempValues_ = new List[n];
for (int i = 0; i < n; ++i) {
tempValues_[i] = new List();
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Add(int i, T value) => tempValues_[i].Add(value);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Build()
{
values_ = new T[n_][];
for (int i = 0; i < values_.Length; ++i) {
values_[i] = tempValues_[i].ToArray();
}
}
}
public class DijkstraQ
{
private int count_ = 0;
private long[] distanceHeap_;
private int[] vertexHeap_;
public int Count => count_;
public DijkstraQ()
{
distanceHeap_ = new long[8];
vertexHeap_ = new int[8];
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Enqueue(long distance, int v)
{
if (distanceHeap_.Length == count_) {
var newDistanceHeap = new long[distanceHeap_.Length << 1];
var newVertexHeap = new int[vertexHeap_.Length << 1];
Unsafe.CopyBlock(
ref Unsafe.As(ref newDistanceHeap[0]),
ref Unsafe.As(ref distanceHeap_[0]),
(uint)(8 * count_));
Unsafe.CopyBlock(
ref Unsafe.As(ref newVertexHeap[0]),
ref Unsafe.As(ref vertexHeap_[0]),
(uint)(4 * count_));
distanceHeap_ = newDistanceHeap;
vertexHeap_ = newVertexHeap;
}
ref var dRef = ref distanceHeap_[0];
ref var vRef = ref vertexHeap_[0];
Unsafe.Add(ref dRef, count_) = distance;
Unsafe.Add(ref vRef, count_) = v;
++count_;
int c = count_ - 1;
while (c > 0) {
int p = (c - 1) >> 1;
var tempD = Unsafe.Add(ref dRef, p);
if (tempD <= distance) {
break;
} else {
Unsafe.Add(ref dRef, c) = tempD;
Unsafe.Add(ref vRef, c) = Unsafe.Add(ref vRef, p);
c = p;
}
}
Unsafe.Add(ref dRef, c) = distance;
Unsafe.Add(ref vRef, c) = v;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public (long distance, int v) Dequeue()
{
ref var dRef = ref distanceHeap_[0];
ref var vRef = ref vertexHeap_[0];
(long distance, int v) ret = (dRef, vRef);
int n = count_ - 1;
var distance = Unsafe.Add(ref dRef, n);
var vertex = Unsafe.Add(ref vRef, n);
int p = 0;
int c = (p << 1) + 1;
while (c < n) {
if (c != n - 1 && Unsafe.Add(ref dRef, c + 1) < Unsafe.Add(ref dRef, c)) {
++c;
}
var tempD = Unsafe.Add(ref dRef, c);
if (distance > tempD) {
Unsafe.Add(ref dRef, p) = tempD;
Unsafe.Add(ref vRef, p) = Unsafe.Add(ref vRef, c);
p = c;
c = (p << 1) + 1;
} else {
break;
}
}
Unsafe.Add(ref dRef, p) = distance;
Unsafe.Add(ref vRef, p) = vertex;
--count_;
return ret;
}
}
public struct ModInt
{
//public const long P = 1000000007;
public const long P = 998244353;
//public const long P = 2;
public const long ROOT = 3;
// (924844033, 5)
// (998244353, 3)
// (1012924417, 5)
// (167772161, 3)
// (469762049, 3)
// (1224736769, 3)
private long value_;
public static ModInt New(long value, bool mods) => new ModInt(value, mods);
public ModInt(long value) => value_ = value;
public ModInt(long value, bool mods)
{
if (mods) {
value %= P;
if (value < 0) {
value += P;
}
}
value_ = value;
}
public static ModInt operator +(ModInt lhs, ModInt rhs)
{
lhs.value_ = (lhs.value_ + rhs.value_) % P;
return lhs;
}
public static ModInt operator +(long lhs, ModInt rhs)
{
rhs.value_ = (lhs + rhs.value_) % P;
return rhs;
}
public static ModInt operator +(ModInt lhs, long rhs)
{
lhs.value_ = (lhs.value_ + rhs) % P;
return lhs;
}
public static ModInt operator -(ModInt lhs, ModInt rhs)
{
lhs.value_ = (P + lhs.value_ - rhs.value_) % P;
return lhs;
}
public static ModInt operator -(long lhs, ModInt rhs)
{
rhs.value_ = (P + lhs - rhs.value_) % P;
return rhs;
}
public static ModInt operator -(ModInt lhs, long rhs)
{
lhs.value_ = (P + lhs.value_ - rhs) % P;
return lhs;
}
public static ModInt operator *(ModInt lhs, ModInt rhs)
{
lhs.value_ = lhs.value_ * rhs.value_ % P;
return lhs;
}
public static ModInt operator *(long lhs, ModInt rhs)
{
rhs.value_ = lhs * rhs.value_ % P;
return rhs;
}
public static ModInt operator *(ModInt lhs, long rhs)
{
lhs.value_ = lhs.value_ * rhs % P;
return lhs;
}
public static ModInt operator /(ModInt lhs, ModInt rhs)
=> lhs * Inverse(rhs);
public static implicit operator ModInt(long n) => new ModInt(n, true);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static ModInt Inverse(ModInt value) => Pow(value, P - 2);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static ModInt Pow(ModInt value, long k) => Pow(value.value_, k);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static ModInt Pow(long value, long k)
{
long ret = 1;
while (k > 0) {
if ((k & 1) != 0) {
ret = ret * value % P;
}
value = value * value % P;
k >>= 1;
}
return new ModInt(ret);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public long ToLong() => value_;
public override string ToString() => value_.ToString();
}
public static class Helper
{
public static long INF => 1L << 50;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static T Clamp(this T value, T min, T max) where T : struct, IComparable
{
if (value.CompareTo(min) <= 0) {
return min;
}
if (value.CompareTo(max) >= 0) {
return max;
}
return value;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void UpdateMin(this ref T target, T value) where T : struct, IComparable
=> target = target.CompareTo(value) > 0 ? value : target;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void UpdateMin(this ref T target, T value, Action onUpdated)
where T : struct, IComparable
{
if (target.CompareTo(value) > 0) {
target = value;
onUpdated(value);
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void UpdateMax(this ref T target, T value) where T : struct, IComparable
=> target = target.CompareTo(value) < 0 ? value : target;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void UpdateMax(this ref T target, T value, Action onUpdated)
where T : struct, IComparable
{
if (target.CompareTo(value) < 0) {
target = value;
onUpdated(value);
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static long BinarySearchOKNG(long ok, long ng, Func satisfies)
{
while (ng - ok > 1) {
long mid = (ok + ng) / 2;
if (satisfies(mid)) {
ok = mid;
} else {
ng = mid;
}
}
return ok;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static long BinarySearchNGOK(long ng, long ok, Func satisfies)
{
while (ok - ng > 1) {
long mid = (ok + ng) / 2;
if (satisfies(mid)) {
ok = mid;
} else {
ng = mid;
}
}
return ok;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static T[] Array1(int n, T initialValue) where T : struct
=> new T[n].Fill(initialValue);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static T[] Array1(int n, Func initializer)
=> Enumerable.Range(0, n).Select(x => initializer(x)).ToArray();
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static T[] Fill(this T[] array, T value)
where T : struct
{
array.AsSpan().Fill(value);
return array;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static T[,] Array2(int n, int m, T initialValule) where T : struct
=> new T[n, m].Fill(initialValule);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static T[,] Array2(int n, int m, Func initializer)
{
var array = new T[n, m];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
array[i, j] = initializer(i, j);
}
}
return array;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static T[,] Fill(this T[,] array, T initialValue)
where T : struct
{
MemoryMarshal.CreateSpan(ref array[0, 0], array.Length).Fill(initialValue);
return array;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Span AsSpan(this T[,] array, int i)
=> MemoryMarshal.CreateSpan(ref array[i, 0], array.GetLength(1));
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static T[,,] Array3(int n1, int n2, int n3, T initialValue)
where T : struct
=> new T[n1, n2, n3].Fill(initialValue);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static T[,,] Fill(this T[,,] array, T initialValue)
where T : struct
{
MemoryMarshal.CreateSpan(ref array[0, 0, 0], array.Length).Fill(initialValue);
return array;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Span AsSpan(this T[,,] array, int i, int j)
=> MemoryMarshal.CreateSpan(ref array[i, j, 0], array.GetLength(2));
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static T[,,,] Array4(int n1, int n2, int n3, int n4, T initialValue)
where T : struct
=> new T[n1, n2, n3, n4].Fill(initialValue);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static T[,,,] Fill(this T[,,,] array, T initialValue)
where T : struct
{
MemoryMarshal.CreateSpan(ref array[0, 0, 0, 0], array.Length).Fill(initialValue);
return array;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Span AsSpan(this T[,,,] array, int i, int j, int k)
=> MemoryMarshal.CreateSpan(ref array[i, j, k, 0], array.GetLength(3));
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static T[] Merge(ReadOnlySpan first, ReadOnlySpan second) where T : IComparable
{
var ret = new T[first.Length + second.Length];
int p = 0;
int q = 0;
while (p < first.Length || q < second.Length) {
if (p == first.Length) {
ret[p + q] = second[q];
q++;
continue;
}
if (q == second.Length) {
ret[p + q] = first[p];
p++;
continue;
}
if (first[p].CompareTo(second[q]) < 0) {
ret[p + q] = first[p];
p++;
} else {
ret[p + q] = second[q];
q++;
}
}
return ret;
}
private static readonly int[] delta4_ = { 1, 0, -1, 0, 1 };
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static IEnumerable<(int i, int j)> Adjacence4(int i, int j, int imax, int jmax)
{
for (int dn = 0; dn < 4; ++dn) {
int d4i = i + delta4_[dn];
int d4j = j + delta4_[dn + 1];
if ((uint)d4i < (uint)imax && (uint)d4j < (uint)jmax) {
yield return (d4i, d4j);
}
}
}
private static readonly int[] delta8_ = { 1, 0, -1, 0, 1, 1, -1, -1, 1 };
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static IEnumerable<(int i, int j)> Adjacence8(int i, int j, int imax, int jmax)
{
for (int dn = 0; dn < 8; ++dn) {
int d8i = i + delta8_[dn];
int d8j = j + delta8_[dn + 1];
if ((uint)d8i < (uint)imax && (uint)d8j < (uint)jmax) {
yield return (d8i, d8j);
}
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static IEnumerable SubBitsOf(int bit)
{
for (int sub = bit; sub > 0; sub = --sub & bit) {
yield return sub;
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static string Reverse(string src)
{
var chars = src.ToCharArray();
for (int i = 0, j = chars.Length - 1; i < j; ++i, --j) {
var tmp = chars[i];
chars[i] = chars[j];
chars[j] = tmp;
}
return new string(chars);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static string Exchange(string src, char a, char b)
{
var chars = src.ToCharArray();
for (int i = 0; i < chars.Length; i++) {
if (chars[i] == a) {
chars[i] = b;
} else if (chars[i] == b) {
chars[i] = a;
}
}
return new string(chars);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void Swap(this string str, int i, int j)
{
var span = str.AsWriteableSpan();
(span[i], span[j]) = (span[j], span[i]);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static char Replace(this string str, int index, char c)
{
var span = str.AsWriteableSpan();
char old = span[index];
span[index] = c;
return old;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Span AsWriteableSpan(this string str)
{
var span = str.AsSpan();
return MemoryMarshal.CreateSpan(ref MemoryMarshal.GetReference(span), span.Length);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static string Join(this IEnumerable values, string separator = "")
=> string.Join(separator, values);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static string JoinNL(this IEnumerable values)
=> string.Join(Environment.NewLine, values);
}
public static class Extensions
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static Span AsSpan(this List list)
{
return Unsafe.As>(list).Array.AsSpan(0, list.Count);
}
private class FakeList
{
public T[] Array = null;
}
}
public class Scanner : IDisposable
{
private const int BUFFER_SIZE = 1024;
private const int ASCII_SPACE = 32;
private const int ASCII_CHAR_BEGIN = 33;
private const int ASCII_CHAR_END = 126;
private readonly string filePath_;
private readonly Stream stream_;
private readonly byte[] buf_ = new byte[BUFFER_SIZE];
private int length_ = 0;
private int index_ = 0;
private bool isEof_ = false;
public Scanner(string file = "")
{
if (string.IsNullOrWhiteSpace(file)) {
stream_ = Console.OpenStandardInput();
} else {
filePath_ = file;
stream_ = new FileStream(file, FileMode.Open);
}
Console.SetOut(new StreamWriter(Console.OpenStandardOutput()) {
AutoFlush = false
});
}
public void Dispose()
{
Console.Out.Flush();
stream_.Dispose();
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public string NextLine()
{
var sb = new StringBuilder();
for (var b = Char(); b >= ASCII_SPACE && b <= ASCII_CHAR_END; b = (char)Read()) {
sb.Append(b);
}
return sb.ToString();
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public char Char()
{
byte b;
do {
b = Read();
} while (b < ASCII_CHAR_BEGIN || ASCII_CHAR_END < b);
return (char)b;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public string String()
{
var sb = new StringBuilder();
for (var b = Char(); b >= ASCII_CHAR_BEGIN && b <= ASCII_CHAR_END; b = (char)Read()) {
sb.Append(b);
}
return sb.ToString();
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public string[] ArrayString(int length)
{
var array = new string[length];
for (int i = 0; i < length; ++i) {
array[i] = String();
}
return array;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public int Int() => (int)Long();
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public int Int(int offset) => Int() + offset;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public (int, int) Int2(int offset = 0)
=> (Int(offset), Int(offset));
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public (int, int, int) Int3(int offset = 0)
=> (Int(offset), Int(offset), Int(offset));
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public (int, int, int, int) Int4(int offset = 0)
=> (Int(offset), Int(offset), Int(offset), Int(offset));
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public (int, int, int, int, int) Int5(int offset = 0)
=> (Int(offset), Int(offset), Int(offset), Int(offset), Int(offset));
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public int[] ArrayInt(int length, int offset = 0)
{
var array = new int[length];
for (int i = 0; i < length; ++i) {
array[i] = Int(offset);
}
return array;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public long Long()
{
long ret = 0;
byte b;
bool ng = false;
do {
b = Read();
} while (b != '-' && (b < '0' || '9' < b));
if (b == '-') {
ng = true;
b = Read();
}
for (; true; b = Read()) {
if (b < '0' || '9' < b) {
return ng ? -ret : ret;
} else {
ret = ret * 10 + b - '0';
}
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public long Long(long offset) => Long() + offset;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public (long, long) Long2(long offset = 0)
=> (Long(offset), Long(offset));
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public (long, long, long) Long3(long offset = 0)
=> (Long(offset), Long(offset), Long(offset));
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public (long, long, long, long) Long4(long offset = 0)
=> (Long(offset), Long(offset), Long(offset), Long(offset));
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public (long, long, long, long, long) Long5(long offset = 0)
=> (Long(offset), Long(offset), Long(offset), Long(offset), Long(offset));
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public long[] ArrayLong(int length, long offset = 0)
{
var array = new long[length];
for (int i = 0; i < length; ++i) {
array[i] = Long(offset);
}
return array;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public BigInteger Big() => new BigInteger(Long());
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public BigInteger Big(long offset) => Big() + offset;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public (BigInteger, BigInteger) Big2(long offset = 0)
=> (Big(offset), Big(offset));
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public (BigInteger, BigInteger, BigInteger) Big3(long offset = 0)
=> (Big(offset), Big(offset), Big(offset));
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public (BigInteger, BigInteger, BigInteger, BigInteger) Big4(long offset = 0)
=> (Big(offset), Big(offset), Big(offset), Big(offset));
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public (BigInteger, BigInteger, BigInteger, BigInteger, BigInteger) Big5(long offset = 0)
=> (Big(offset), Big(offset), Big(offset), Big(offset), Big(offset));
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public BigInteger[] ArrayBig(int length, long offset = 0)
{
var array = new BigInteger[length];
for (int i = 0; i < length; ++i) {
array[i] = Big(offset);
}
return array;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public double Double() => double.Parse(String(), CultureInfo.InvariantCulture);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public double Double(double offset) => Double() + offset;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public (double, double) Double2(double offset = 0)
=> (Double(offset), Double(offset));
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public (double, double, double) Double3(double offset = 0)
=> (Double(offset), Double(offset), Double(offset));
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public (double, double, double, double) Double4(double offset = 0)
=> (Double(offset), Double(offset), Double(offset), Double(offset));
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public (double, double, double, double, double) Double5(double offset = 0)
=> (Double(offset), Double(offset), Double(offset), Double(offset), Double(offset));
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public double[] ArrayDouble(int length, double offset = 0)
{
var array = new double[length];
for (int i = 0; i < length; ++i) {
array[i] = Double(offset);
}
return array;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public decimal Decimal() => decimal.Parse(String(), CultureInfo.InvariantCulture);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public decimal Decimal(decimal offset) => Decimal() + offset;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public (decimal, decimal) Decimal2(decimal offset = 0)
=> (Decimal(offset), Decimal(offset));
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public (decimal, decimal, decimal) Decimal3(decimal offset = 0)
=> (Decimal(offset), Decimal(offset), Decimal(offset));
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public (decimal, decimal, decimal, decimal) Decimal4(decimal offset = 0)
=> (Decimal(offset), Decimal(offset), Decimal(offset), Decimal(offset));
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public (decimal, decimal, decimal, decimal, decimal) Decimal5(decimal offset = 0)
=> (Decimal(offset), Decimal(offset), Decimal(offset), Decimal(offset), Decimal(offset));
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public decimal[] ArrayDecimal(int length, decimal offset = 0)
{
var array = new decimal[length];
for (int i = 0; i < length; ++i) {
array[i] = Decimal(offset);
}
return array;
}
private byte Read()
{
if (isEof_) {
throw new EndOfStreamException();
}
if (index_ >= length_) {
index_ = 0;
if ((length_ = stream_.Read(buf_, 0, BUFFER_SIZE)) <= 0) {
isEof_ = true;
return 0;
}
}
return buf_[index_++];
}
public void Save(string text)
{
if (string.IsNullOrWhiteSpace(filePath_)) {
return;
}
File.WriteAllText(filePath_ + "_output.txt", text);
}
}
}