#line 1 "/home/maspy/compro/library/my_template.hpp" #if defined(LOCAL) #include #else // https://codeforces.com/blog/entry/96344 #pragma GCC optimize("Ofast,unroll-loops") // いまの CF だとこれ入れると動かない? // #pragma GCC target("avx2,popcnt") #include using namespace std; using ll = long long; using u32 = unsigned int; using u64 = unsigned long long; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template constexpr T infty = 0; template <> constexpr int infty = 1'000'000'000; template <> constexpr ll infty = ll(infty) * infty * 2; template <> constexpr u32 infty = infty; template <> constexpr u64 infty = infty; template <> constexpr i128 infty = i128(infty) * infty; template <> constexpr double infty = infty; template <> constexpr long double infty = infty; using pi = pair; using vi = vector; template using vc = vector; template using vvc = vector>; template using vvvc = vector>; template using vvvvc = vector>; template using vvvvvc = vector>; template using pq = priority_queue; template using pqg = priority_queue, greater>; #define vv(type, name, h, ...) \ vector> name(h, vector(__VA_ARGS__)) #define vvv(type, name, h, w, ...) \ vector>> name( \ h, vector>(w, vector(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector>>> name( \ a, vector>>( \ b, vector>(c, vector(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) \ for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s))) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_mod_2(int x) { return __builtin_parity(x); } int popcnt_mod_2(u32 x) { return __builtin_parity(x); } int popcnt_mod_2(ll x) { return __builtin_parityll(x); } int popcnt_mod_2(u64 x) { return __builtin_parityll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template T floor(T a, T b) { return a / b - (a % b && (a ^ b) < 0); } template T ceil(T x, T y) { return floor(x + y - 1, y); } template T bmod(T x, T y) { return x - y * floor(x, y); } template pair divmod(T x, T y) { T q = floor(x, y); return {q, x - q * y}; } template T SUM(const vector &A) { T sm = 0; for (auto &&a: A) sm += a; return sm; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) \ sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template T POP(deque &que) { T a = que.front(); que.pop_front(); return a; } template T POP(pq &que) { T a = que.top(); que.pop(); return a; } template T POP(pqg &que) { T a = que.top(); que.pop(); return a; } template T POP(vc &que) { T a = que.back(); que.pop_back(); return a; } template ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc s_to_vi(const string &S, char first_char) { vc A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template vector cumsum(vector &A, int off = 1) { int N = A.size(); vector B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template vector argsort(const vector &A) { vector ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template vc rearrange(const vc &A, const vc &I) { vc B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } #endif #line 1 "/home/maspy/compro/library/other/io.hpp" #define FASTIO #include // https://judge.yosupo.jp/submission/21623 namespace fastio { static constexpr uint32_t SZ = 1 << 17; char ibuf[SZ]; char obuf[SZ]; char out[100]; // pointer of ibuf, obuf uint32_t pil = 0, pir = 0, por = 0; struct Pre { char num[10000][4]; constexpr Pre() : num() { for (int i = 0; i < 10000; i++) { int n = i; for (int j = 3; j >= 0; j--) { num[i][j] = n % 10 | '0'; n /= 10; } } } } constexpr pre; inline void load() { memcpy(ibuf, ibuf + pil, pir - pil); pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin); pil = 0; if (pir < SZ) ibuf[pir++] = '\n'; } inline void flush() { fwrite(obuf, 1, por, stdout); por = 0; } void rd(char &c) { do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); } void rd(string &x) { x.clear(); char c; do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); do { x += c; if (pil == pir) load(); c = ibuf[pil++]; } while (!isspace(c)); } template void rd_real(T &x) { string s; rd(s); x = stod(s); } template void rd_integer(T &x) { if (pil + 100 > pir) load(); char c; do c = ibuf[pil++]; while (c < '-'); bool minus = 0; if constexpr (is_signed::value || is_same_v) { if (c == '-') { minus = 1, c = ibuf[pil++]; } } x = 0; while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; } if constexpr (is_signed::value || is_same_v) { if (minus) x = -x; } } void rd(int &x) { rd_integer(x); } void rd(ll &x) { rd_integer(x); } void rd(i128 &x) { rd_integer(x); } void rd(u32 &x) { rd_integer(x); } void rd(u64 &x) { rd_integer(x); } void rd(u128 &x) { rd_integer(x); } void rd(double &x) { rd_real(x); } void rd(long double &x) { rd_real(x); } void rd(f128 &x) { rd_real(x); } template void rd(pair &p) { return rd(p.first), rd(p.second); } template void rd_tuple(T &t) { if constexpr (N < std::tuple_size::value) { auto &x = std::get(t); rd(x); rd_tuple(t); } } template void rd(tuple &tpl) { rd_tuple(tpl); } template void rd(array &x) { for (auto &d: x) rd(d); } template void rd(vc &x) { for (auto &d: x) rd(d); } void read() {} template void read(H &h, T &... t) { rd(h), read(t...); } void wt(const char c) { if (por == SZ) flush(); obuf[por++] = c; } void wt(const string s) { for (char c: s) wt(c); } void wt(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) wt(s[i]); } template void wt_integer(T x) { if (por > SZ - 100) flush(); if (x < 0) { obuf[por++] = '-', x = -x; } int outi; for (outi = 96; x >= 10000; outi -= 4) { memcpy(out + outi, pre.num[x % 10000], 4); x /= 10000; } if (x >= 1000) { memcpy(obuf + por, pre.num[x], 4); por += 4; } else if (x >= 100) { memcpy(obuf + por, pre.num[x] + 1, 3); por += 3; } else if (x >= 10) { int q = (x * 103) >> 10; obuf[por] = q | '0'; obuf[por + 1] = (x - q * 10) | '0'; por += 2; } else obuf[por++] = x | '0'; memcpy(obuf + por, out + outi + 4, 96 - outi); por += 96 - outi; } template void wt_real(T x) { ostringstream oss; oss << fixed << setprecision(15) << double(x); string s = oss.str(); wt(s); } void wt(int x) { wt_integer(x); } void wt(ll x) { wt_integer(x); } void wt(i128 x) { wt_integer(x); } void wt(u32 x) { wt_integer(x); } void wt(u64 x) { wt_integer(x); } void wt(u128 x) { wt_integer(x); } void wt(double x) { wt_real(x); } void wt(long double x) { wt_real(x); } void wt(f128 x) { wt_real(x); } template void wt(const pair val) { wt(val.first); wt(' '); wt(val.second); } template void wt_tuple(const T t) { if constexpr (N < std::tuple_size::value) { if constexpr (N > 0) { wt(' '); } const auto x = std::get(t); wt(x); wt_tuple(t); } } template void wt(tuple tpl) { wt_tuple(tpl); } template void wt(const array val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } template void wt(const vector val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } void print() { wt('\n'); } template void print(Head &&head, Tail &&... tail) { wt(head); if (sizeof...(Tail)) wt(' '); print(forward(tail)...); } // gcc expansion. called automaticall after main. void __attribute__((destructor)) _d() { flush(); } } // namespace fastio using fastio::read; using fastio::print; using fastio::flush; #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define U32(...) \ u32 __VA_ARGS__; \ read(__VA_ARGS__) #define U64(...) \ u64 __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector name(size); \ read(name) #define VV(type, name, h, w) \ vector> name(h, vector(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } #line 3 "main.cpp" #line 2 "/home/maspy/compro/library/mod/dynamic_modint.hpp" #line 2 "/home/maspy/compro/library/mod/modint_common.hpp" struct has_mod_impl { template static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{}); template static auto check(...) -> std::false_type; }; template class has_mod : public decltype(has_mod_impl::check(std::declval())) {}; template mint inv(int n) { static const int mod = mint::get_mod(); static vector dat = {0, 1}; assert(0 <= n); if (n >= mod) n %= mod; while (len(dat) <= n) { int k = len(dat); int q = (mod + k - 1) / k; dat.eb(dat[k * q - mod] * mint::raw(q)); } return dat[n]; } template mint fact(int n) { static const int mod = mint::get_mod(); assert(0 <= n && n < mod); static vector dat = {1, 1}; while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat))); return dat[n]; } template mint fact_inv(int n) { static vector dat = {1, 1}; if (n < 0) return mint(0); while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv(len(dat))); return dat[n]; } template mint fact_invs(Ts... xs) { return (mint(1) * ... * fact_inv(xs)); } template mint multinomial(Head &&head, Tail &&... tail) { return fact(head) * fact_invs(std::forward(tail)...); } template mint C_dense(int n, int k) { static vvc C; static int H = 0, W = 0; auto calc = [&](int i, int j) -> mint { if (i == 0) return (j == 0 ? mint(1) : mint(0)); return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0); }; if (W <= k) { FOR(i, H) { C[i].resize(k + 1); FOR(j, W, k + 1) { C[i][j] = calc(i, j); } } W = k + 1; } if (H <= n) { C.resize(n + 1); FOR(i, H, n + 1) { C[i].resize(W); FOR(j, W) { C[i][j] = calc(i, j); } } H = n + 1; } return C[n][k]; } template mint C(ll n, ll k) { assert(n >= 0); if (k < 0 || n < k) return 0; if constexpr (dense) return C_dense(n, k); if constexpr (!large) return multinomial(n, k, n - k); k = min(k, n - k); mint x(1); FOR(i, k) x *= mint(n - i); return x * fact_inv(k); } template mint C_inv(ll n, ll k) { assert(n >= 0); assert(0 <= k && k <= n); if (!large) return fact_inv(n) * fact(k) * fact(n - k); return mint(1) / C(n, k); } // [x^d](1-x)^{-n} template mint C_negative(ll n, ll d) { assert(n >= 0); if (d < 0) return mint(0); if (n == 0) { return (d == 0 ? mint(1) : mint(0)); } return C(n + d - 1, d); } #line 2 "/home/maspy/compro/library/mod/primitive_root.hpp" #line 2 "/home/maspy/compro/library/nt/factor.hpp" #line 2 "/home/maspy/compro/library/random/base.hpp" u64 RNG_64() { static uint64_t x_ = uint64_t(chrono::duration_cast( chrono::high_resolution_clock::now().time_since_epoch()) .count()) * 10150724397891781847ULL; x_ ^= x_ << 7; return x_ ^= x_ >> 9; } u64 RNG(u64 lim) { return RNG_64() % lim; } ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); } #line 2 "/home/maspy/compro/library/mod/mongomery_modint.hpp" // odd mod. // x の代わりに rx を持つ template struct Mongomery_modint { using mint = Mongomery_modint; inline static U1 m, r, n2; static constexpr int W = numeric_limits::digits; static void set_mod(U1 mod) { assert(mod & 1 && mod <= U1(1) << (W - 2)); m = mod, n2 = -U2(m) % m, r = m; FOR(5) r *= 2 - m * r; r = -r; assert(r * m == U1(-1)); } static U1 reduce(U2 b) { return (b + U2(U1(b) * r) * m) >> W; } U1 x; Mongomery_modint() : x(0) {} Mongomery_modint(U1 x) : x(reduce(U2(x) * n2)){}; U1 val() const { U1 y = reduce(x); return y >= m ? y - m : y; } mint &operator+=(mint y) { x = ((x += y.x) >= m ? x - m : x); return *this; } mint &operator-=(mint y) { x -= (x >= y.x ? y.x : y.x - m); return *this; } mint &operator*=(mint y) { x = reduce(U2(x) * y.x); return *this; } mint operator+(mint y) const { return mint(*this) += y; } mint operator-(mint y) const { return mint(*this) -= y; } mint operator*(mint y) const { return mint(*this) *= y; } bool operator==(mint y) const { return (x >= m ? x - m : x) == (y.x >= m ? y.x - m : y.x); } bool operator!=(mint y) const { return not operator==(y); } mint pow(ll n) const { assert(n >= 0); mint y = 1, z = *this; for (; n; n >>= 1, z *= z) if (n & 1) y *= z; return y; } }; template using Mongomery_modint_32 = Mongomery_modint; template using Mongomery_modint_64 = Mongomery_modint; #line 3 "/home/maspy/compro/library/nt/primetest.hpp" bool primetest(const u64 x) { assert(x < u64(1) << 62); if (x == 2 or x == 3 or x == 5 or x == 7) return true; if (x % 2 == 0 or x % 3 == 0 or x % 5 == 0 or x % 7 == 0) return false; if (x < 121) return x > 1; const u64 d = (x - 1) >> lowbit(x - 1); using mint = Mongomery_modint_64<202311020>; mint::set_mod(x); const mint one(u64(1)), minus_one(x - 1); auto ok = [&](u64 a) -> bool { auto y = mint(a).pow(d); u64 t = d; while (y != one && y != minus_one && t != x - 1) y *= y, t <<= 1; if (y != minus_one && t % 2 == 0) return false; return true; }; if (x < (u64(1) << 32)) { for (u64 a: {2, 7, 61}) if (!ok(a)) return false; } else { for (u64 a: {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) { if (!ok(a)) return false; } } return true; } #line 5 "/home/maspy/compro/library/nt/factor.hpp" template ll rho(ll n, ll c) { assert(n > 1); const mint cc(c); auto f = [&](mint x) { return x * x + cc; }; mint x = 1, y = 2, z = 1, q = 1; ll g = 1; const ll m = 1LL << (__lg(n) / 5); for (ll r = 1; g == 1; r <<= 1) { x = y; FOR(r) y = f(y); for (ll k = 0; k < r && g == 1; k += m) { z = y; FOR(min(m, r - k)) y = f(y), q *= x - y; g = gcd(q.val(), n); } } if (g == n) do { z = f(z); g = gcd((x - z).val(), n); } while (g == 1); return g; } ll find_prime_factor(ll n) { assert(n > 1); if (primetest(n)) return n; FOR(100) { ll m = 0; if (n < (1 << 30)) { using mint = Mongomery_modint_32<20231025>; mint::set_mod(n); m = rho(n, RNG(0, n)); } else { using mint = Mongomery_modint_64<20231025>; mint::set_mod(n); m = rho(n, RNG(0, n)); } if (primetest(m)) return m; n = m; } assert(0); return -1; } // ソートしてくれる vc> factor(ll n) { assert(n >= 1); vc> pf; FOR(p, 2, 100) { if (p * p > n) break; if (n % p == 0) { ll e = 0; do { n /= p, e += 1; } while (n % p == 0); pf.eb(p, e); } } while (n > 1) { ll p = find_prime_factor(n); ll e = 0; do { n /= p, e += 1; } while (n % p == 0); pf.eb(p, e); } sort(all(pf)); return pf; } vc> factor_by_lpf(ll n, vc& lpf) { vc> res; while (n > 1) { int p = lpf[n]; int e = 0; while (n % p == 0) { n /= p; ++e; } res.eb(p, e); } return res; } #line 2 "/home/maspy/compro/library/mod/mod_pow.hpp" #line 2 "/home/maspy/compro/library/mod/barrett.hpp" // https://github.com/atcoder/ac-library/blob/master/atcoder/internal_math.hpp struct Barrett { u32 m; u64 im; explicit Barrett(u32 m = 1) : m(m), im(u64(-1) / m + 1) {} u32 umod() const { return m; } u32 modulo(u64 z) { if (m == 1) return 0; u64 x = (u64)(((unsigned __int128)(z)*im) >> 64); u64 y = x * m; return (z - y + (z < y ? m : 0)); } u64 floor(u64 z) { if (m == 1) return z; u64 x = (u64)(((unsigned __int128)(z)*im) >> 64); u64 y = x * m; return (z < y ? x - 1 : x); } pair divmod(u64 z) { if (m == 1) return {z, 0}; u64 x = (u64)(((unsigned __int128)(z)*im) >> 64); u64 y = x * m; if (z < y) return {x - 1, z - y + m}; return {x, z - y}; } u32 mul(u32 a, u32 b) { return modulo(u64(a) * b); } }; struct Barrett_64 { u128 mod, mh, ml; explicit Barrett_64(u64 mod = 1) : mod(mod) { u128 m = u128(-1) / mod; if (m * mod + mod == u128(0)) ++m; mh = m >> 64; ml = m & u64(-1); } u64 umod() const { return mod; } u64 modulo(u128 x) { u128 z = (x & u64(-1)) * ml; z = (x & u64(-1)) * mh + (x >> 64) * ml + (z >> 64); z = (x >> 64) * mh + (z >> 64); x -= z * mod; return x < mod ? x : x - mod; } u64 mul(u64 a, u64 b) { return modulo(u128(a) * b); } }; #line 5 "/home/maspy/compro/library/mod/mod_pow.hpp" u32 mod_pow(int a, ll n, int mod) { assert(n >= 0); a = ((a %= mod) < 0 ? a + mod : a); if ((mod & 1) && (mod < (1 << 30))) { using mint = Mongomery_modint_32<202311021>; mint::set_mod(mod); return mint(a).pow(n).val(); } Barrett bt(mod); int r = 1; while (n) { if (n & 1) r = bt.mul(r, a); a = bt.mul(a, a), n >>= 1; } return r; } u64 mod_pow_64(ll a, ll n, u64 mod) { assert(n >= 0); a = ((a %= mod) < 0 ? a + mod : a); if ((mod & 1) && (mod < (u64(1) << 62))) { using mint = Mongomery_modint_64<202311021>; mint::set_mod(mod); return mint(a).pow(n).val(); } Barrett_64 bt(mod); ll r = 1; while (n) { if (n & 1) r = bt.mul(r, a); a = bt.mul(a, a), n >>= 1; } return r; } #line 6 "/home/maspy/compro/library/mod/primitive_root.hpp" // int int primitive_root(int p) { auto pf = factor(p - 1); auto is_ok = [&](int g) -> bool { for (auto&& [q, e]: pf) if (mod_pow(g, (p - 1) / q, p) == 1) return false; return true; }; while (1) { int x = RNG(1, p); if (is_ok(x)) return x; } return -1; } ll primitive_root_64(ll p) { auto pf = factor(p - 1); auto is_ok = [&](ll g) -> bool { for (auto&& [q, e]: pf) if (mod_pow_64(g, (p - 1) / q, p) == 1) return false; return true; }; while (1) { ll x = RNG(1, p); if (is_ok(x)) return x; } return -1; } #line 6 "/home/maspy/compro/library/mod/dynamic_modint.hpp" template struct Dynamic_Modint { static constexpr bool is_modint = true; using mint = Dynamic_Modint; u32 val; static Barrett bt; static u32 umod() { return bt.umod(); } static int get_mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = Barrett(m); } static Dynamic_Modint raw(u32 v) { Dynamic_Modint x; x.val = v; return x; } Dynamic_Modint() : val(0) {} Dynamic_Modint(u32 x) : val(bt.modulo(x)) {} Dynamic_Modint(u64 x) : val(bt.modulo(x)) {} Dynamic_Modint(int x) : val((x %= get_mod()) < 0 ? x + get_mod() : x) {} Dynamic_Modint(ll x) : val((x %= get_mod()) < 0 ? x + get_mod() : x) {} mint& operator+=(const mint& rhs) { val = (val += rhs.val) < umod() ? val : val - umod(); return *this; } mint& operator-=(const mint& rhs) { val = (val += umod() - rhs.val) < umod() ? val : val - umod(); return *this; } mint& operator*=(const mint& rhs) { val = bt.mul(val, rhs.val); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inverse(); } mint operator-() const { return mint() - *this; } mint pow(ll n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x, n >>= 1; } return r; } mint inverse() const { int x = val, mod = get_mod(); int a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } if (u < 0) u += mod; return u; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs.val == rhs.val; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs.val != rhs.val; } static pair& get_ntt() { static pair p = {-1, -1}; return p; } static void set_ntt_info() { int mod = get_mod(); int k = lowbit(mod - 1); int r = primitive_root(mod); r = mod_pow(r, (mod - 1) >> k, mod); get_ntt() = {k, r}; } static pair ntt_info() { return get_ntt(); } static bool can_ntt() { return ntt_info().fi != -1; } }; #ifdef FASTIO template void rd(Dynamic_Modint& x) { fastio::rd(x.val); x.val %= Dynamic_Modint::umod(); } template void wt(Dynamic_Modint x) { fastio::wt(x.val); } #endif using dmint = Dynamic_Modint<-1>; template Barrett Dynamic_Modint::bt; #line 5 "main.cpp" using mint = dmint; // path a, cycle b // cycle の中:L A(N); FOR(R, 1, N + 1) FOR(L, 1, R + 1) { FOR(d, 1, N) { // Lk<=d<=Rk ll k = d / L; if (d <= R * k) A[d] += mint(1); } } A = cumsum(A, 0); // サイクル長に対してかける係数 vc B(N + 1); FOR(b, 1, N + 1) { FOR(i, 1, N + 1) B[b] += mint(b / gcd(b, i)); } // S が path 上, (path,path) FOR(b, 1, N) { FOR(a, N - b) { mint x = fact(N - 1); x *= fact_inv(N - 1 - a - b); x *= mint(N).pow(N - 1 - a - b); // (path,path) ANS += A[a] * x; } } // S が path 上, (path,cycle) FOR(b, 1, N + 1) { FOR(a, N - b) { mint x = fact(N - 1); x *= fact_inv(N - 1 - a - b); x *= mint(N).pow(N - 1 - a - b); ANS += mint(N * (N - 1) / 2) * x * b; // L=R の場合 ANS += x * B[b]; } } // S が cycle 上 FOR(b, 1, N + 1) { mint x = multinomial(N - 1, b - 1, N - b) * fact(b - 1); x *= mint(N).pow(N - b); // L