#include using namespace std; using ll =long long; #define all(v) v.begin(),v.end() #define rep(i,a,b) for(int i=a;i=b;i--) ll INF=2e18; template class modint { long long x; public: modint(long long x=0) : x((x%mod+mod)%mod) {} modint operator-() const { return modint(-x); } modint& operator+=(const modint& a) { if ((x += a.x) >= mod) x -= mod; return *this; } modint& operator-=(const modint& a) { if ((x += mod-a.x) >= mod) x -= mod; return *this; } modint& operator*=(const modint& a) { (x *= a.x) %= mod; return *this; } modint operator+(const modint& a) const { modint res(*this); return res+=a; } modint operator-(const modint& a) const { modint res(*this); return res-=a; } modint operator*(const modint& a) const { modint res(*this); return res*=a; } modint pow(ll t) const { if (!t) return 1; modint a = pow(t>>1); a *= a; if (t&1) a *= *this; return a; } // for prime mod modint inv() const { return pow(mod-2); } modint& operator/=(const modint& a) { return (*this) *= a.inv(); } modint operator/(const modint& a) const { modint res(*this); return res/=a; } bool operator==(const modint &a) const { modint res(*this); return res.x==a.x; } bool operator!=(const modint &a) const { modint res(*this); return res.x!=a.x; } friend ostream& operator<<(ostream& os, const modint& m){ os << m.x; return os; } }; using mint=modint<998244353>; template struct Matrix { vector> A; Matrix() {} Matrix(size_t n) :A(n,vector (n,0)) {} Matrix(size_t n,size_t m) :A(n,vector (m,0)) {} size_t height() const { return (A.size()); } size_t width() const { assert(height()!=0) ; return (A[0].size()); } inline const vector< T > &operator[](int k) const { return (A.at(k)); } inline vector &operator[](int k) { return (A.at(k)); } void I() { assert(height()==width()); for(int i=0;i > C(n, vector< T >(m, 0)); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) for(int k = 0; k < p; k++) C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]); A.swap(C); return (*this); } Matrix &operator^=(long long k) { Matrix B = Matrix::I(height()); while(k > 0) { if(k & 1) B *= *this; *this *= *this; k >>= 1LL; } A.swap(B.A); return (*this); } Matrix &operator%=(const ll &B) { size_t n = height(), m = width(); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] %=B; return (*this); } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); } }; ll mod_pow(ll x,ll n,ll mod) { ll res=1; while(n>0) { if(n&1) { res=res*x%mod; } x=x*x%mod; n>>=1; } return res; } void solve() { ll N,M;cin>>N>>M; N%=(2*M); ll k=max(0LL,N-(M+1)+1); ll noko=N-2*k; Matrix mat(2,1); mat[0][0]=0,mat[1][0]=1; Matrix x(2,2); x[0][0]=10,x[0][1]=9,x[1][0]=0,x[1][1]=1; for(ll i=0;i<30;i++) { if(noko&(1LL<>t; for(ll i=0;i