#pragma GCC target("avx") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include using namespace std; #define rep(i,n) for(int i = 0; i < (int)n; i++) #define FOR(n) for(int i = 0; i < (int)n; i++) #define repi(i,a,b) for(int i = (int)a; i < (int)b; i++) #define all(x) x.begin(),x.end() //#define mp make_pair #define vi vector #define vvi vector #define vvvi vector #define vvvvi vector #define pii pair #define vpii vector> template bool chmax(T &a, const T b) {if(a bool chmin(T &a, const T b) {if(a>b) {a=b; return true;} else {return false;}} using ll = long long; using ld = long double; using ull = unsigned long long; const ll INF = numeric_limits::max() / 2; const ld pi = 3.1415926535897932384626433832795028; const ll mod = 998244353; int dx[] = {1, 0, -1, 0, -1, -1, 1, 1}; int dy[] = {0, 1, 0, -1, -1, 1, -1, 1}; #define int long long template struct Modular_Int { using Mint_Type = Modular_Int; long long x; Modular_Int() = default; Modular_Int(long long x_) : x(x_ >= 0? x_%MOD : (MOD-(-x_)%MOD)%MOD) {} long long val() const { return (x%MOD+MOD)%MOD; } static long long get_mod() { return MOD; } Mint_Type& operator^=(long long d) { Mint_Type ret(1); long long nx = x; while(d) { if(d&1) ret *= nx; (nx *= nx) %= MOD; d >>= 1; } *this = ret; return *this; } Mint_Type operator^(long long d) const {return Mint_Type(*this) ^= d;} Mint_Type pow(long long d) const {return Mint_Type(*this) ^= d;} //use this basically Mint_Type inv() const { return Mint_Type(*this) ^ (MOD-2); } //only if the module number is not prime //Don't use. This is broken. // Mint_Type inv() const { // long long a = (x%MOD+MOD)%MOD, b = MOD, u = 1, v = 0; // while(b) { // long long t = a/b; // a -= t*b, swap(a, b); // u -= t*v, swap(u, v); // } // return Mint_Type(u); // } Mint_Type& operator+=(const Mint_Type other) { if((x += other.x) >= MOD) x -= MOD; return *this; } Mint_Type& operator-=(const Mint_Type other) { if((x -= other.x) < 0) x += MOD; return *this; } Mint_Type& operator*=(const Mint_Type other) { long long z = x; z *= other.x; z %= MOD; x = z; if(x < 0) x += MOD; return *this; } Mint_Type& operator/=(const Mint_Type other) { return *this = *this * other.inv(); } Mint_Type& operator++() { x++; if (x == MOD) x = 0; return *this; } Mint_Type& operator--() { if (x == 0) x = MOD; x--; return *this; } Mint_Type operator+(const Mint_Type other) const {return Mint_Type(*this) += other;} Mint_Type operator-(const Mint_Type other) const {return Mint_Type(*this) -= other;} Mint_Type operator*(const Mint_Type other) const {return Mint_Type(*this) *= other;} Mint_Type operator/(const Mint_Type other) const {return Mint_Type(*this) /= other;} Mint_Type& operator+=(const long long other) {Mint_Type other_(other); *this += other_; return *this;} Mint_Type& operator-=(const long long other) {Mint_Type other_(other); *this -= other_; return *this;} Mint_Type& operator*=(const long long other) {Mint_Type other_(other); *this *= other_; return *this;} Mint_Type& operator/=(const long long other) {Mint_Type other_(other); *this /= other_; return *this;} Mint_Type operator+(const long long other) const {return Mint_Type(*this) += other;} Mint_Type operator-(const long long other) const {return Mint_Type(*this) -= other;} Mint_Type operator*(const long long other) const {return Mint_Type(*this) *= other;} Mint_Type operator/(const long long other) const {return Mint_Type(*this) /= other;} bool operator==(const Mint_Type other) const {return (*this).val() == other.val();} bool operator!=(const Mint_Type other) const {return (*this).val() != other.val();} bool operator==(const long long other) const {return (*this).val() == other;} bool operator!=(const long long other) const {return (*this).val() != other;} Mint_Type operator-() const {return Mint_Type(0LL)-Mint_Type(*this);} //-1: sqrtが存在しない //複数存在する場合どれを返すかは不明 long long get_sqrt() const { long long a = val(), p = get_mod(); if(a == 0) return 0; if(p == 2) return a; if(Mint_Type(a).pow((p - 1) >> 1).val() != 1) return -1; long long b = 1; while(Mint_Type(b).pow((p - 1) >> 1).val() == 1) ++b; long long e = 0, m = p - 1; while(m % 2 == 0) m >>= 1, ++e; long long x = Mint_Type(a).pow((m - 1) >> 1).val(); long long y = a * (x * x % p) % p; (x *= a) %= p; long long z = Mint_Type(b).pow(m).val(); while(y != 1) { long long j = 0, t = y; while(t != 1) { j += 1; (t *= t) %= p; } z = Mint_Type(z).pow((long long)1 << (e - j - 1)).val(); (x *= z) %= p; (z *= z) %= p; (y *= z) %= p; e = j; } return x; } template friend Mint_Type operator+(T t, const Mint_Type& o) { return o + t; } template friend Mint_Type operator-(T t, const Mint_Type& o) { return -o + t; } template friend Mint_Type operator*(T t, const Mint_Type& o) { return o * t; } template friend Mint_Type operator/(T t, const Mint_Type& o) { return o.inv() * t; } }; // TODO: SELECT MOD_VAL // const long long MOD_VAL = 1e9+7; const long long MOD_VAL = 998244353; using mint = Modular_Int; istream& operator>>(istream& is, mint& x) { long long X; is >> X; x = X; return is; } ostream& operator<<(ostream& os, mint& x) { os << x.val(); return os; } // 1e9 + 7をmodとして使いたいときに注意!!!!特にCFやCCなどのAtCoder以外 void solve() { int n, m; cin >> n >> m; n %= 2*m; if(n <= m) { cout << (mint(10).pow(n)-1).val() << endl; }else { int rem = n-m; cout << (mint(10).pow(2*n-m)-mint(10).pow(n-m)).val() << endl; } } signed main() { cin.tie(nullptr); ios::sync_with_stdio(false); int t; cin >> t; while(t--) solve(); return 0; }