#include #include using namespace std; using namespace atcoder; using ll = long long; using mint = modint998244353; ll solveF(ll H, ll W, ll K) { vector> dp(W + 1, vector(1 << H, 0)); dp[0][(1 << H) - 1] = 1LL; for (ll j = 0; j < W; j++) { for (ll s = 0; s < (1 << H); s++) { for (ll t = 0; t < (1 << H); t++) { ll u = s & t; ll cnt = __builtin_popcount(u); if (cnt >= K) { dp[j + 1][t] += dp[j][s]; } } } } mint ans = 0; for (ll s = 0; s < (1 << H); s++) { ans += dp[W][s]; } return ans.val(); } ll solveFNaive(ll H, ll W, ll K) { return 0; } constexpr long long INF = (1LL << 60); // 辺 struct Edge { int from; int to; ll cost; }; // ベルマンフォード法 (1.2 負閉路の影響を受ける頂点を調べる) // 負の閉路が存在する場合 true を返し, 負閉路の影響を受ける頂点は -INF にセットされる // distances は頂点数と同じサイズ, 全要素 INF で初期化しておく bool BellmanFord(const std::vector& edges, std::vector& distances, int startIndex) { distances[startIndex] = 0; for (size_t i = 0; i < distances.size(); ++i) { bool changed = false; // 各辺について for (const auto& edge : edges) { // (INF + cost) は INF なので処理しない if (distances[edge.from] == INF) { continue; } // to までの新しい距離 const long long d = (distances[edge.from] + edge.cost); // d が現在の記録より小さければ更新 if (d < distances[edge.to]) { distances[edge.to] = d; changed = true; } } // どの頂点も更新されなかったら終了 if (!changed) { return false; } } // 頂点数分だけさらに繰り返し, 負閉路の影響を受ける頂点に -INF を伝播 for (size_t i = 0; i < distances.size(); ++i) { for (const auto& edge : edges) { if (distances[edge.from] == INF) { continue; } const long long d = (distances[edge.from] + edge.cost); if (d < distances[edge.to]) { // 負閉路の影響を受ける頂点を -INF に distances[edge.to] = -INF; } } } return true; } int main() { ll N, M; cin >> N >> M; vector A(N); for (ll i = 0; i < N; i++) { cin >> A[i]; } vector edges(M); for (ll i = 0; i < M; i++) { ll a, b, c; cin >> a >> b >> c; a--; b--; edges[i] = {(int)a, (int)b, c - A[b]}; } vector dist(N); bool negativeRoop = BellmanFord(edges, dist, 0); if (dist[N - 1] == -INF) { cout << "inf" << endl; } else { cout << A[0] - dist[N - 1] << endl; } return 0; }