#include using namespace std; using lint = long long; #line 2 "graph/shortest-path/bellman-ford.hpp" #line 2 "graph/graph-template.hpp" /** * @brief Graph Template(グラフテンプレート) */ template< typename T = int > struct Edge { int from, to; T cost; int idx; Edge() = default; Edge(int from, int to, T cost = 1, int idx = -1) : from(from), to(to), cost(cost), idx(idx) {} operator int() const { return to; } }; template< typename T = int > struct Graph { vector< vector< Edge< T > > > g; int es; Graph() = default; explicit Graph(int n) : g(n), es(0) {} size_t size() const { return g.size(); } void add_directed_edge(int from, int to, T cost = 1) { g[from].emplace_back(from, to, cost, es++); } void add_edge(int from, int to, T cost = 1) { g[from].emplace_back(from, to, cost, es); g[to].emplace_back(to, from, cost, es++); } void read(int M, int padding = -1, bool weighted = false, bool directed = false) { for(int i = 0; i < M; i++) { int a, b; cin >> a >> b; a += padding; b += padding; T c = T(1); if(weighted) cin >> c; if(directed) add_directed_edge(a, b, c); else add_edge(a, b, c); } } inline vector< Edge< T > > &operator[](const int &k) { return g[k]; } inline const vector< Edge< T > > &operator[](const int &k) const { return g[k]; } }; template< typename T = int > using Edges = vector< Edge< T > >; #line 4 "graph/shortest-path/bellman-ford.hpp" /** * @brief Bellman-Ford(単一始点最短路) * @docs docs/bellman-ford.md */ template< typename T > vector< T > bellman_ford(const Edges< T > &edges, int V, int s) { const auto INF = numeric_limits< T >::max(); vector< T > dist(V, INF); dist[s] = 0; for(int i = 0; i < V - 1; i++) { for(auto &e : edges) { if(dist[e.from] == INF) continue; dist[e.to] = min(dist[e.to], dist[e.from] + e.cost); } } for(auto &e : edges) { if(dist[e.from] == INF) continue; if(dist[e.from] + e.cost < dist[e.to]) return vector< T >(); } return dist; } int main() { int n, m; cin >> n >> m; vector A(n); Edges< > es; for (int i = 0; i < n; i++) cin >> A[i]; for (int i = 0; i < m; i++) { lint a, b, c; cin >> a >> b >> c; a--, b--; es.push_back({a, b, -(A[a]-c)}); } auto dists = bellman_ford(es, n, 0); if(dists.empty()) cout << "inf" << endl; else cout << -dists[n-1]+A[n-1] << endl; }