class LazySegmentTree: #seg = LazySegmentTree(op_X, e_X, mapping, composision_of_Aut_X, id_of_Aut_X, N, array=None): def __init__(self, op_X, e_X, mapping, composision_of_Aut_X, id_of_Aut_X, N, array=None): # それぞれ Xの演算, 単位元, f(x), f\circ g, Xの恒等変換 # M が X に作用する #__slots__ = ["op_X", "e_X", "mapping","compose","id_M","N","log","N0","data","lazy"] self.e_X = e_X; self.op_X = op_X; self.mapping = mapping; self.compose = composision_of_Aut_X; self.id_M = id_of_Aut_X self.N = N self.log = (N-1).bit_length() self.N0 = 1<>i) self.data[p] = x for i in range(1, self.log + 1): self.update(p>>i) # 1点取得 def point_get(self, p): p += self.N0 for i in range(self.log, 0, -1): self.push(p>>i) return self.data[p] # 半開区間[L,R)をopでまとめる def prod(self, l, r): if l == r: return self.e_X l += self.N0 r += self.N0 for i in range(self.log, 0, -1): if (l>>i)<>i) if (r>>i)<>i) sml = smr = self.e_X while l < r: if l & 1: sml = self.op_X(sml, self.data[l]) l += 1 if r & 1: r -= 1 smr = self.op_X(self.data[r], smr) l >>= 1 r >>= 1 return self.op_X(sml, smr) # 全体をopでまとめる def all_prod(self): return self.data[1] # 1点作用 def apply_point(self, p, f): p += self.N0 for i in range(self.log, 0, -1): self.push(p>>i) self.data[p] = self.mapping(f, self.data[p]) for i in range(1, self.log + 1): self.update(p>>i) # 区間作用 def apply(self, l, r, f): if l == r: return l += self.N0 r += self.N0 l2, r2 = l, r while l < r: if l & 1: self.all_apply(l, f) l += 1 if r & 1: r -= 1 self.all_apply(r, f) l >>= 1 r >>= 1 l, r = l2, r2 for i in range(1, self.log + 1): if (l>>i)<>i) if (r>>i)<>i) """ 始点 l を固定 f(x_l*...*x_{r-1}) が True になる最大の r つまり TTTTFFFF となるとき、F となる最小の添え字 存在しない場合 n が返る f(e_M) = True でないと壊れる """ def max_right(self, l, g): if l == self.N: return self.N l += self.N0 for i in range(self.log, 0, -1): self.push(l>>i) sm = self.e_X while True: while l&1 == 0: l >>= 1 if not g(self.op_X(sm, self.data[l])): while l < self.N0: self.push(l) l *= 2 if g(self.op_X(sm, self.data[l])): sm = self.op_X(sm, self.data[l]) l += 1 return l - self.N0 sm = self.op_X(sm, self.data[l]) l += 1 if l&-l == l: break return self.N """ 終点 r を固定 f(x_l*...*x_{r-1}) が True になる最小の l つまり FFFFTTTT となるとき、T となる最小の添え字 存在しない場合 r が返る f(e_M) = True でないと壊れる """ def min_left(self, r, g): if r == 0: return 0 r += self.N0 for i in range(self.log, 0, -1): self.push((r-1)>>i) sm = self.e_X while True: r -= 1 while r>1 and r&1: r >>= 1 if not g(self.op_X(self.data[r], sm)): while r < self.N0: self.push(r) r = 2*r + 1 if g(self.op_X(self.data[r], sm)): sm = self.op_X(self.data[r], sm) r -= 1 return r + 1 - self.N0 sm = self.op_X(self.data[r], sm) if r&-r == r: break return 0 # 以下内部関数 def update(self, k): self.data[k] = self.op_X(self.data[2*k], self.data[2*k+1]) def all_apply(self, k, f): self.data[k] = self.mapping(f, self.data[k]) if k < self.N0: self.lazy[k] = self.compose(f, self.lazy[k]) def push(self, k): #propagate と同じ if self.lazy[k] is self.id_M: return self.data[2*k ] = self.mapping(self.lazy[k], self.data[2*k]) self.data[2*k+1] = self.mapping(self.lazy[k], self.data[2*k+1]) if 2*k < self.N0: self.lazy[2*k] = self.compose(self.lazy[k], self.lazy[2*k]) self.lazy[2*k+1] = self.compose(self.lazy[k], self.lazy[2*k+1]) self.lazy[k] = self.id_M ################################################################### # ################################################################### class RangeAddRangeMin(LazySegmentTree): def __init__(self,N,MAX,array=None): from operator import add super().__init__(min, MAX, add, add, 0, N, array) import sys readline = sys.stdin.readline n, = map(int, readline().split()) *a, = map(int, readline().split()) q, = map(int, readline().split()) seg = RangeAddRangeMin(n,1<<60,a) for _ in range(q): k,l,r,c = map(int, readline().split()) if k==1: seg.apply(l-1,r,c) else: print(seg.prod(l-1,r))