#include using namespace std; #pragma GCC optimize("Ofast") #define rep(i,n) for(ll i=0;i=0;i--) #define perl(i,r,l) for(ll i=r-1;i>=l;i--) #define fi first #define se second #define pb push_back #define ins insert #define pqueue(x) priority_queue,greater> #define all(x) (x).begin(),(x).end() #define CST(x) cout<> #define rev(x) reverse(x); using ll=long long; using vl=vector; using vvl=vector>; using pl=pair; using vpl=vector; using vvpl=vector; const ll MOD=1000000007; const ll MOD9=998244353; const int inf=1e9+10; const ll INF=4e18; const ll dy[9]={1,0,-1,0,1,1,-1,-1,0}; const ll dx[9]={0,1,0,-1,1,-1,1,-1,0}; template inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } const int mod = MOD9; const int max_n = 2000050; struct mint { ll x; // typedef long long ll; mint(ll x=0):x((x%mod+mod)%mod){} mint operator-() const { return mint(-x);} mint& operator+=(const mint a) { if ((x += a.x) >= mod) x -= mod; return *this; } mint& operator-=(const mint a) { if ((x += mod-a.x) >= mod) x -= mod; return *this; } mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this;} mint operator+(const mint a) const { return mint(*this) += a;} mint operator-(const mint a) const { return mint(*this) -= a;} mint operator*(const mint a) const { return mint(*this) *= a;} mint pow(ll t) const { if (!t) return 1; mint a = pow(t>>1); a *= a; if (t&1) a *= *this; return a; } bool operator==(const mint &p) const { return x == p.x; } bool operator!=(const mint &p) const { return x != p.x; } // for prime mod mint inv() const { return pow(mod-2);} mint& operator/=(const mint a) { return *this *= a.inv();} mint operator/(const mint a) const { return mint(*this) /= a;} }; istream& operator>>(istream& is, mint& a) { return is >> a.x;} ostream& operator<<(ostream& os, const mint& a) { return os << a.x;} using vm=vector; using vvm=vector; struct combination { vector fact, ifact; combination(int n):fact(n+1),ifact(n+1) { assert(n < mod); fact[0] = 1; for (int i = 1; i <= n; ++i) fact[i] = fact[i-1]*i; ifact[n] = fact[n].inv(); for (int i = n; i >= 1; --i) ifact[i-1] = ifact[i]*i; } mint operator()(int n, int k) { if (k < 0 || k > n) return 0; return fact[n]*ifact[k]*ifact[n-k]; } }comb(max_n); // fast Walsh–Hadamard transform template std::vector fast_hadamard_transform(std::vector vec) { using hadamard_size_type = typename std::vector::size_type; auto vec_size = vec.size(); // check vec_size is power of 2 assert(((vec_size - 1)&vec_size) == 0); for(hadamard_size_type i = 1; i < vec_size; i = i << 1) { auto mask = ~i; for(auto j = i; j < vec_size; j = (j+1)|i) { T a = vec[j&mask]; T &b = vec[j]; vec[j&mask] += b; b = a - b; } } return vec; } // inverse fast Walsh–Hadamard transform template auto inv_fast_hadamard_transform (VecType &&vec) { auto vec_size = vec.size(); auto &&ret = fast_hadamard_transform(std::forward(vec)); for(auto &i : ret) i /= vec_size; return ret; } // bitwise xor convolution // using fast-Walsh–Hadamard-transform template std::vector xor_convolution (const std::vector &a, const std::vector &b) { using xorconv_size_type = typename std::vector::size_type; assert(a.size() == b.size()); auto vec_size = a.size(); std::vector &&transa = fast_hadamard_transform(a), &&transb = fast_hadamard_transform(b); for(xorconv_size_type i = 0; i < vec_size; i++) { transa[i] *= transb[i]; } return inv_fast_hadamard_transform(transa); } int main(){ ll n;cin >> n; vl c(1<> c[i]; auto f=fast_hadamard_transform(c); //for(auto p:f)cout << p <<" ";cout << endl; mint ans=0; rep(i,1<> l >> r; if(f[i]<0)ans+=f[i]*l; else ans+=f[i]*r; } cout << ans/mint(2).pow(n) << endl; }