#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using lint = long long; using pint = pair; using plint = pair; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; } template bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; } const std::vector> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}}; int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); } template std::pair operator+(const std::pair &l, const std::pair &r) { return std::make_pair(l.first + r.first, l.second + r.second); } template std::pair operator-(const std::pair &l, const std::pair &r) { return std::make_pair(l.first - r.first, l.second - r.second); } template std::vector sort_unique(std::vector vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template int arglb(const std::vector &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template int argub(const std::vector &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); } template IStream &operator>>(IStream &is, std::vector &vec) { for (auto &v : vec) is >> v; return is; } template OStream &operator<<(OStream &os, const std::vector &vec); template OStream &operator<<(OStream &os, const std::array &arr); template OStream &operator<<(OStream &os, const std::unordered_set &vec); template OStream &operator<<(OStream &os, const pair &pa); template OStream &operator<<(OStream &os, const std::deque &vec); template OStream &operator<<(OStream &os, const std::set &vec); template OStream &operator<<(OStream &os, const std::multiset &vec); template OStream &operator<<(OStream &os, const std::unordered_multiset &vec); template OStream &operator<<(OStream &os, const std::pair &pa); template OStream &operator<<(OStream &os, const std::map &mp); template OStream &operator<<(OStream &os, const std::unordered_map &mp); template OStream &operator<<(OStream &os, const std::tuple &tpl); template OStream &operator<<(OStream &os, const std::vector &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template OStream &operator<<(OStream &os, const std::array &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } template std::istream &operator>>(std::istream &is, std::tuple &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template OStream &operator<<(OStream &os, const std::tuple &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; } template OStream &operator<<(OStream &os, const std::unordered_set &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::deque &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template OStream &operator<<(OStream &os, const std::set &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::multiset &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::unordered_multiset &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::pair &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; } template OStream &operator<<(OStream &os, const std::map &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template OStream &operator<<(OStream &os, const std::unordered_map &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl #define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr) #else #define dbg(x) ((void)0) #define dbgif(cond, x) ((void)0) #endif // Fast Walsh-Hadamard transform and its abstraction // Tutorials: // template void abstract_fwht(std::vector &seq, F f) { const int n = seq.size(); assert(__builtin_popcount(n) == 1); for (int w = 1; w < n; w *= 2) { for (int i = 0; i < n; i += w * 2) { for (int j = 0; j < w; j++) { f(seq[i + j], seq[i + j + w]); } } } } template std::vector bitwise_conv(std::vector x, std::vector y, F1 f, F2 finv) { const int n = x.size(); assert(__builtin_popcount(n) == 1); assert(x.size() == y.size()); if (x == y) { abstract_fwht(x, f), y = x; } else { abstract_fwht(x, f), abstract_fwht(y, f); } for (size_t i = 0; i < x.size(); i++) { x[i] *= y[i]; } abstract_fwht(x, finv); return x; } // bitwise xor convolution (FWHT-based) // ret[i] = \sum_j x[j] * y[i ^ j] // if T is integer, ||x||_1 * ||y||_1 * 2 < numeric_limits::max() template std::vector xorconv(std::vector x, std::vector y) { auto f = [](T &lo, T &hi) { T c = lo + hi; hi = lo - hi, lo = c; }; auto finv = [](T &lo, T &hi) { T c = lo + hi; hi = (lo - hi) / 2, lo = c / 2; // Reconsider HEAVY complexity of division by 2 when T is ModInt }; return bitwise_conv(x, y, f, finv); } // bitwise AND conolution // ret[i] = \sum_{(j & k) == i} x[j] * y[k] template std::vector andconv(std::vector x, std::vector y) { return bitwise_conv( x, y, [](T &lo, T &hi) { lo += hi; }, [](T &lo, T &hi) { lo -= hi; }); } // bitwise OR convolution // ret[i] = \sum_{(j | k) == i} x[j] * y[k] template std::vector orconv(std::vector x, std::vector y) { return bitwise_conv( x, y, [](T &lo, T &hi) { hi += lo; }, [](T &lo, T &hi) { hi -= lo; }); } int main() { int N, M, Q; cin >> N >> M >> Q; if (M > Q) swap(M, Q); vector A(N), B(N); REP(i, N) cin >> A.at(i) >> B.at(i); dbg(make_tuple(M, Q, A, B)); vector u(1 << N), v(1 << N); auto rec = [&](auto &&self, int i, int S, int sum) -> void { if (sum > Q) return; if (sum <= M) u.at(S) = 1; if (sum <= Q) v.at(S) = 1; if (i == N) return; self(self, i + 1, S, sum); self(self, i + 1, S | (1 << i), sum + A.at(i)); }; rec(rec, 0, 0, 0); u = orconv(u, v); long long ret = 0; auto rec2 = [&](auto &&self, int i, int S, long long sum) -> void { if (u.at(S)) chmax(ret, sum); if (i == N) return; self(self, i + 1, S, sum); self(self, i + 1, S | (1 << i), sum + B.at(i)); }; rec2(rec2, 0, 0, 0); cout << ret << '\n'; }