#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; namespace { using Integer = long long; //__int128; template istream& operator >> (istream& is, vector& vec){for(T& val: vec) is >> val; return is;} template istream& operator , (istream& is, T& val){ return is >> val;} template ostream& operator << (ostream& os, const vector& vec){for(int i=0; i ostream& operator , (ostream& os, const T& val){ return os << " " << val;} template void print(const H& head){ cout << head; } template void print(const H& head, const T& ... tail){ cout << head << " "; print(tail...); } template void println(const T& ... values){ print(values...); cout << endl; } template void eprint(const H& head){ cerr << head; } template void eprint(const H& head, const T& ... tail){ cerr << head << " "; eprint(tail...); } template void eprintln(const T& ... values){ eprint(values...); cerr << endl; } string operator "" _s (const char* str, size_t size){ return move(string(str)); } constexpr Integer my_pow(Integer x, Integer k, Integer z=1){return k==0 ? z : k==1 ? z*x : (k&1) ? my_pow(x*x,k>>1,z*x) : my_pow(x*x,k>>1,z);} constexpr Integer my_pow_mod(Integer x, Integer k, Integer M, Integer z=1){return k==0 ? z%M : k==1 ? z*x%M : (k&1) ? my_pow_mod(x*x%M,k>>1,M,z*x%M) : my_pow_mod(x*x%M,k>>1,M,z);} constexpr unsigned long long operator "" _ten (unsigned long long value){ return my_pow(10,value); } inline int k_bit(Integer x, int k){return (x>>k)&1;} //0-indexed mt19937 mt(chrono::duration_cast(chrono::steady_clock::now().time_since_epoch()).count()); template string join(const vector& v, const string& sep){ stringstream ss; for(int i=0; i0) ss << sep; ss << v[i]; } return ss.str(); } } constexpr long long mod = 9_ten + 7; long long gcd(long long a, long long b){ return (b==0)?a:gcd(b,a%b); } template long long gcd(long long a, long long b, T ... c){ return gcd(gcd(a,b), c...);} long long lcm(long long a, long long b){ if(a long long lcm(long long a, long long b, T ... c){ return lcm(lcm(a,b), c...);} long long extgcd(long long a, long long b, long long &x, long long &y){ long long d=a; if(b!=0){ d = extgcd(b, a%b, y, x); y -= (a/b) * x; }else{ x = 1; y = 0; } return d; } long long mod_inverse(long long a, long long m){ long long x,y; extgcd(a,m,x,y); return (m+x%m)%m; } vector divisors(long long N){ vector ret; ret.push_back(1); ret.push_back(N); for(long long i=2; i*i<=N; i++){ if(N%i==0){ ret.push_back(i); if(i*i != N) ret.push_back(N/i); } } sort(ret.begin(), ret.end()); return ret; } namespace Montgomery{ template constexpr long long PRE_COMP(long long r, long long res=0, long long t=0, long long i = 1){ return (r>1) ? ( PRE_COMP(r/2, res + (t%2==0?i:0), (t%2==0?(t+MOD):t) / 2, i*2) ):( res ); } template class Values{ public: static constexpr long long R = 1LL<<30; // R>MOD && gcd(R,MOD)==1 static constexpr long long mask = (1LL<<30)-1; static constexpr long long R2 = (R*R)%MOD; static constexpr long long Ninv = PRE_COMP(1<<30); // N*Ninv = R-1 mod R static long long Reduction(long long x){ long long s = ((x & mask) * Ninv) & mask; long long ret = (x + s*MOD ) >> 30; if(ret>=MOD) ret -= MOD; return ret; } }; template struct M_Int{ long long value; M_Int() : value(0) {} M_Int(long long val, bool convert=true) : value(convert ? Values::Reduction(val * Values::R2) : val){} //convert==true : int -> M_Int, false : M_Int::value -> M_Int M_Int(const M_Int& x) : value( x.value ){} //M_Int -> M_Int M_Int& operator = (const M_Int& x){ value = x.value; return *this; } M_Int& operator = (const long long& x){ value = Values::Reduction(x * Values::R2); return *this; } M_Int operator * (const M_Int& x) { return M_Int( Values::Reduction(value * x.value) , false ); } M_Int operator * (const long long& x){ return (*this) * M_Int(x); } template M_Int& operator *= (const T& x){ return (*this) = (*this)*x; } M_Int operator + (const M_Int& x) { long long tmp = value + x.value; if(tmp >= MOD) tmp -= MOD; return M_Int(tmp, false); } M_Int operator + (const long long& x){ return (*this)+M_Int(x); } template M_Int& operator += (const T& x) { return (*this) = (*this) + x; } M_Int operator - (const M_Int& x) { long long tmp = value - x.value; if(tmp < 0 ) tmp += MOD; return M_Int(tmp, false); } M_Int operator - (const long long& x){ return (*this)-M_Int(x); } template M_Int& operator -= (const T& x) { return (*this) = (*this) - x; } bool operator == (const M_Int& x){ return value == x.value; } bool operator == (const long long& x){ M_Int tmp(x); return (*this)==tmp; } long long to_i () { // M_int -> int return Values::Reduction(value); } operator long long () { // M_int -> int return Values::Reduction(value); } }; template istream& operator>>(istream& is, M_Int& v){ long long tmp; is >> tmp; v=tmp; return is; } template ostream& operator<<(ostream& os, M_Int v){ return os << v.to_i(); } template M_Int operator + (long long l, M_Int r){ return r+l; } template M_Int operator - (long long l, M_Int r){ return r-l; } template M_Int operator * (long long l, M_Int r){ return r*l; } } using mint = Montgomery::M_Int<1000000007>; mint mint_pow(mint x, long long y){ //x^y if(x.to_i()==0 && y!=0) return 0; mint ret=1LL; while(y){ if(y&1LL) ret *= x; x *= x; y >>= 1LL; } return ret; } int main(){ long long h,w,k; cin >> h,w,k; mint ans = 0; map res; long long l = lcm(h,w); auto v1 = divisors(h); auto v2 = divisors(w); vector v; for(auto x : v1){ for(auto y : v2){ if(x*y > l) break; v.push_back( x * y ); } } sort(v.begin(), v.end()); v.erase( unique(v.begin(), v.end()), v.end()); for(auto d : v){ mint tmp = mint(gcd(h,d)) * mint(gcd(w,d)); for(auto dd : v){ if(dd*dd > d) break; if(d%dd == 0){ tmp -= res[dd]; if(dd*dd != d){ tmp -= res[d/dd]; } } } res[d] = tmp; ans += mint_pow(k, h*w/d) * tmp; } ans *= mint( mod_inverse(h*w, mod) ); println(ans.to_i()); return 0; }