#include #ifdef LOCAL #include #else #define debug(...) void(0) #endif namespace elementary_math { template std::vector divisor(T n) { std::vector res; for (T i = 1; i * i <= n; i++) { if (n % i == 0) { res.emplace_back(i); if (i * i != n) res.emplace_back(n / i); } } return res; } template std::vector> prime_factor(T n) { std::vector> res; for (T p = 2; p * p <= n; p++) { if (n % p == 0) { res.emplace_back(p, 0); while (n % p == 0) { res.back().second++; n /= p; } } } if (n > 1) res.emplace_back(n, 1); return res; } std::vector osa_k(int n) { std::vector min_factor(n + 1, 0); for (int i = 2; i <= n; i++) { if (min_factor[i]) continue; for (int j = i; j <= n; j += i) { if (!min_factor[j]) { min_factor[j] = i; } } } return min_factor; } std::vector prime_factor(const std::vector& min_factor, int n) { std::vector res; while (n > 1) { res.emplace_back(min_factor[n]); n /= min_factor[n]; } return res; } long long modpow(long long x, long long n, long long mod) { assert(0 <= n && 1 <= mod && mod < (1LL << 31)); if (mod == 1) return 0; x %= mod; long long res = 1; while (n > 0) { if (n & 1) res = res * x % mod; x = x * x % mod; n >>= 1; } return res; } long long extgcd(long long a, long long b, long long& x, long long& y) { long long d = a; if (b != 0) { d = extgcd(b, a % b, y, x); y -= (a / b) * x; } else x = 1, y = 0; return d; } long long inv_mod(long long a, long long mod) { assert(1 <= mod); long long x, y; if (extgcd(a, mod, x, y) != 1) return -1; return (mod + x % mod) % mod; } template T euler_phi(T n) { auto pf = prime_factor(n); T res = n; for (const auto& p : pf) { res /= p.first; res *= p.first - 1; } return res; } std::vector euler_phi_table(int n) { std::vector res(n + 1, 0); iota(res.begin(), res.end(), 0); for (int i = 2; i <= n; i++) { if (res[i] != i) continue; for (int j = i; j <= n; j += i) res[j] = res[j] / i * (i - 1); } return res; } // minimum i > 0 s.t. x^i \equiv 1 \pmod{m} template T order(T x, T m) { T n = euler_phi(m); auto cand = divisor(n); sort(cand.begin(), cand.end()); for (auto& i : cand) { if (modpow(x, i, m) == 1) { return i; } } return -1; } template std::vector> quotient_ranges(T n) { std::vector> res; T m = 1; for (; m * m <= n; m++) res.emplace_back(m, m, n / m); for (; m >= 1; m--) { T l = n / (m + 1) + 1, r = n / m; if (l <= r and std::get<1>(res.back()) < l) res.emplace_back(l, r, n / l); } return res; } } // namespace elementary_math using namespace std; typedef long long ll; #define all(x) begin(x), end(x) constexpr int INF = (1 << 30) - 1; constexpr long long IINF = (1LL << 60) - 1; constexpr int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1}; template istream& operator>>(istream& is, vector& v) { for (auto& x : v) is >> x; return is; } template ostream& operator<<(ostream& os, const vector& v) { auto sep = ""; for (const auto& x : v) os << exchange(sep, " ") << x; return os; } template bool chmin(T& x, U&& y) { return y < x and (x = forward(y), true); } template bool chmax(T& x, U&& y) { return x < y and (x = forward(y), true); } template void mkuni(vector& v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } template int lwb(const vector& v, const T& x) { return lower_bound(begin(v), end(v), x) - begin(v); } const int MAX_A = 200010; int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int N; cin >> N; vector A(N), B(N); for (int i = 0; i < N; i++) cin >> A[i] >> B[i]; vector ord(N); iota(all(ord), 0); sort(all(ord), [&](int l, int r) { return A[l] * B[l] > A[r] * B[r]; }); ll ans = 0; vector dp(MAX_A, INF); for (int& idx : ord) { int a = A[idx], b = B[idx]; ll mini = IINF; auto ds = elementary_math::divisor(a); for (int& d : ds) { if (dp[d] != INF) chmin(mini, a * dp[d]); chmin(dp[d], a / d); } chmax(ans, 1LL * a * b / mini); } cout << ans << '\n'; return 0; }