// -*- coding:utf-8-unix -*- // #![feature(map_first_last)] #![allow(dead_code)] #![allow(unused_imports)] #![allow(unused_macros)] // use core::num; use std::cmp::*; use std::fmt::*; use std::hash::*; use std::iter::FromIterator; use std::*; use std::{cmp, collections, fmt, io, iter, ops, str}; const INF: i64 = 1223372036854775807; const UINF: usize = INF as usize; const LINF: i64 = 2147483647; const INF128: i128 = 1223372036854775807000000000000; const MOD1: i64 = 1000000007; const MOD9: i64 = 998244353; const MOD: i64 = MOD9; // const MOD: i64 = MOD2; const UMOD: usize = MOD as usize; const M_PI: f64 = 3.14159265358979323846; // use proconio::input; // const MOD: i64 = INF; use cmp::Ordering::*; use std::collections::*; use std::io::stdin; use std::io::stdout; use std::io::Write; macro_rules! p { ($x:expr) => { //if expr println!("{}", $x); }; } macro_rules! vp { // vector print separate with space ($x:expr) => { println!( "{}", $x.iter() .map(|x| x.to_string()) .collect::>() .join(" ") ); }; } macro_rules! d { ($x:expr) => { eprintln!("{:?}", $x); }; } macro_rules! yn { ($val:expr) => { if $val { println!("Yes"); } else { println!("No"); } }; } macro_rules! map{ // declear btreemap ($($key:expr => $val:expr),*) => { { let mut map = ::std::collections::BTreeMap::new(); $( map.insert($key, $val); )* map } }; } macro_rules! set{ // declear btreemap ($($key:expr),*) => { { let mut set = ::std::collections::BTreeSet::new(); $( set.insert($key); )* set } }; } fn main() { solve(); } //input output #[allow(dead_code)] fn read() -> T { let mut s = String::new(); std::io::stdin().read_line(&mut s).ok(); s.trim().parse().ok().unwrap() } #[allow(dead_code)] fn read_vec() -> Vec { read::() .split_whitespace() .map(|e| e.parse().ok().unwrap()) .collect() } #[allow(dead_code)] fn read_mat(n: u32) -> Vec> { (0..n).map(|_| read_vec()).collect() } #[allow(dead_code)] fn readii() -> (i64, i64) { let mut vec: Vec = read_vec(); (vec[0], vec[1]) } #[allow(dead_code)] fn readiii() -> (i64, i64, i64) { let mut vec: Vec = read_vec(); (vec[0], vec[1], vec[2]) } #[allow(dead_code)] fn readuu() -> (usize, usize) { let mut vec: Vec = read_vec(); (vec[0], vec[1]) } #[allow(dead_code)] fn readff() -> (f64, f64) { let mut vec: Vec = read_vec(); (vec[0], vec[1]) } fn readcc() -> (char, char) { let mut vec: Vec = read_vec(); (vec[0], vec[1]) } fn readuuu() -> (usize, usize, usize) { let mut vec: Vec = read_vec(); (vec[0], vec[1], vec[2]) } #[allow(dead_code)] fn readiiii() -> (i64, i64, i64, i64) { let mut vec: Vec = read_vec(); (vec[0], vec[1], vec[2], vec[3]) } #[allow(dead_code)] fn readuuuu() -> (usize, usize, usize, usize) { let mut vec: Vec = read_vec(); (vec[0], vec[1], vec[2], vec[3]) } fn read_imat(h: usize) -> Vec> { (0..h).map(|_| read_vec()).collect() } fn read_cmat(h: usize) -> Vec> { (0..h).map(|_| read::().chars().collect()).collect() } pub struct Dsu { n: usize, // root node: -1 * component size // otherwise: parent parent_or_size: Vec, } impl Dsu { // 0 <= size <= 10^8 is constrained. pub fn new(size: usize) -> Self { Self { n: size, parent_or_size: vec![-1; size], } } pub fn merge(&mut self, a: usize, b: usize) -> usize { assert!(a < self.n); assert!(b < self.n); let (mut x, mut y) = (self.leader(a), self.leader(b)); if x == y { return x; } if -self.parent_or_size[x] < -self.parent_or_size[y] { std::mem::swap(&mut x, &mut y); } self.parent_or_size[x] += self.parent_or_size[y]; self.parent_or_size[y] = x as i32; x } pub fn same(&mut self, a: usize, b: usize) -> bool { assert!(a < self.n); assert!(b < self.n); self.leader(a) == self.leader(b) } pub fn leader(&mut self, a: usize) -> usize { assert!(a < self.n); if self.parent_or_size[a] < 0 { return a; } self.parent_or_size[a] = self.leader(self.parent_or_size[a] as usize) as i32; self.parent_or_size[a] as usize } pub fn size(&mut self, a: usize) -> usize { assert!(a < self.n); let x = self.leader(a); -self.parent_or_size[x] as usize } pub fn groups(&mut self) -> Vec> { let mut leader_buf = vec![0; self.n]; let mut group_size = vec![0; self.n]; for i in 0..self.n { leader_buf[i] = self.leader(i); group_size[leader_buf[i]] += 1; } let mut result = vec![Vec::new(); self.n]; for i in 0..self.n { result[i].reserve(group_size[i]); } for i in 0..self.n { result[leader_buf[i]].push(i); } result .into_iter() .filter(|x| !x.is_empty()) .collect::>>() } } fn is_upper_string(s: String, t: String) -> bool { let mut s = s.chars().collect::>(); let mut t = t.chars().collect::>(); let mut map_s = HashMap::new(); let mut map_t = HashMap::new(); for i in 0..s.len() { *map_s.entry(s[i]).or_insert(0) += 1; } for i in 0..t.len() { *map_t.entry(t[i]).or_insert(0) += 1; } let mut cnt = 0; for (k, v) in map_t.iter() { if map_s.contains_key(k) { if map_s[k] < map_t[k] { cnt += map_t[k] - map_s[k]; } else if map_s[k] > map_t[k] { return false; } } else { cnt += map_t[k]; } } cnt == 1 } fn solve() { let (n, q) = readuu(); let mut v: Vec = read::().chars().map(|c| c as char).collect(); let mut suffix_sum = vec![(0, 0); n + 1]; let mut prefix_sum = vec![(0, 0); n + 1]; for i in (0..n).rev() { if v[i] == 'd' { suffix_sum[i].0 = suffix_sum[i + 1].0 + 1; suffix_sum[i].1 = suffix_sum[i + 1].1; } else { suffix_sum[i].0 = suffix_sum[i + 1].0; suffix_sum[i].1 = suffix_sum[i + 1].1 + 1; } } for i in 0..n { if v[i] == 'd' { prefix_sum[i + 1].0 = prefix_sum[i].0 + 1; prefix_sum[i + 1].1 = prefix_sum[i].1; } else { prefix_sum[i + 1].0 = prefix_sum[i].0; prefix_sum[i + 1].1 = prefix_sum[i].1 + 1; } } let ah = prefix_sum[n].0; let aw = prefix_sum[n].1; for i in 0..q { let (h, w, p) = readuuu(); let mut pos = p; let mut num_h = if ah != 0 { h / ah } else { UINF }; let mut num_w = if aw != 0 { w / aw } else { UINF }; let num = min(num_h, num_w); if num > 0 { pos = 0; } let mut cur_h = num * ah; let mut cur_w = num * aw; if cur_h == h || cur_w == w { p!(0); continue; } let f = |x: i64| -> bool { let x = x as usize; let add_h = prefix_sum[x].0 - prefix_sum[pos].0; let add_w = prefix_sum[x].1 - prefix_sum[pos].1; let nh = cur_h + add_h; let nw = cur_w + add_w; return nh < h && nw < w; }; let mut ok = pos as i64; let mut ng = n as i64; while (ng - ok).abs() > 1 { let mid = (ok + ng) / 2; if f(mid) { ok = mid; } else { ng = mid; } } p!(ok + 1); } return; }