import sys input = sys.stdin.readline class Fenwick_Tree: def __init__(self, n): self._n = n self.data = [0] * n def add(self, p, x): assert 0 <= p < self._n p += 1 while p <= self._n: self.data[p - 1] += x p += p & -p def sum(self, l, r): assert 0 <= l <= r <= self._n return self._sum(r) - self._sum(l) def _sum(self, r): s = 0 while r > 0: s += self.data[r - 1] r -= r & -r return s def get(self, k): k += 1 x, r = 0, 1 while r < self._n: r <<= 1 len = r while len: if x + len - 1 < self._n: if self.data[x + len - 1] < k: k -= self.data[x + len - 1] x += len len >>= 1 return x def __str__(self): temp = [] for i in range(self._n): temp.append(str(self.sum(i, i + 1))) return ' '.join(temp) N, Q = map(int, input().split()) S = list(input()) h = S.count("D") w = N - h T1 = Fenwick_Tree(3 * N) T2 = Fenwick_Tree(3 * N) for i in range(N): if S[i] == "D": T1.add(i, 1) T1.add(i + N, 1) T1.add(i + 2 * N, 1) else: T2.add(i, 1) T2.add(i + N, 1) T2.add(i + 2 * N, 1) def BinarySearch(check, yes = 10 ** 18, no = -1): while abs(yes - no) != 1: mid = (yes + no)//2 if check(mid): yes = mid else: no = mid return yes def check1(m): return (H - h * m) > 0 and (W - w * m) > 0 def check2(r): x = T1.sum(P, r) y = T2.sum(P, r) return H - x <= 0 or W - y <= 0 for _ in range(Q): H, W, P = map(int, input().split()) m = BinarySearch(check1, 0, 10 ** 9 + 5) H -= m * h W -= m * w if H == 0 or W == 0: print(P) continue print(BinarySearch(check2, 3 * N, P)%N)