class Prime: def __init__(self,N): assert N<=10**8 self.smallest_prime_factor=[None]*(N+1) for i in range(2,N+1,2): self.smallest_prime_factor[i]=2 n=int(N**.5)+1 for p in range(3,n,2): if self.smallest_prime_factor[p]==None: self.smallest_prime_factor[p]=p for i in range(p**2,N+1,2*p): if self.smallest_prime_factor[i]==None: self.smallest_prime_factor[i]=p for p in range(n,N+1): if self.smallest_prime_factor[p]==None: self.smallest_prime_factor[p]=p self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]] def Factorize(self,N): assert N>=1 factors=defaultdict(int) if N<=len(self.smallest_prime_factor)-1: while N!=1: factors[self.smallest_prime_factor[N]]+=1 N//=self.smallest_prime_factor[N] else: for p in self.primes: while N%p==0: N//=p factors[p]+=1 if N
0
divisors=[1]
for p,e in self.Factorize(N).items():
pow_p=[1]
for _ in range(e):
pow_p.append(pow_p[-1]*p)
divisors=[i*j for i in divisors for j in pow_p]
return divisors
def Is_Prime(self,N):
return N==self.smallest_prime_factor[N]
def Totient(self,N):
for p in self.Factorize(N).keys():
N*=p-1
N//=p
return N
def Mebius(self,N):
fact=self.Factorize(N)
for e in fact.values():
if e>=2:
return 0
else:
if len(fact)%2==0:
return 1
else:
return -1
N=int(input())
A=list(map(int,input().split()))
max_A=max(A)
Pr=Prime(max_A)
Q=int(input())
ans_lst=["Yes"]*Q
P,L,R=[],[],[]
for q in range(Q):
p,l,r=map(int,input().split())
l-=1
P.append(p)
L.append(l)
R.append(r)
cumsum0=[0]*(N+1)
for i in range(N):
if A[i]==0:
cumsum0[i+1]=1
for i in range(1,N+1):
cumsum0[i]+=cumsum0[i-1]
for p in Pr.primes:
cumsum=[0]*(N+1)
for i in range(N):
if A[i]:
while A[i]%p==0:
cumsum[i+1]+=1
A[i]//=p
for i in range(1,N+1):
cumsum[i]+=cumsum[i-1]
for q in range(Q):
if cumsum0[R[q]]-cumsum0[L[q]]:
continue
cnt=0
while P[q]%p==0:
P[q]//=p
cnt+=1
if cumsum[R[q]]-cumsum[L[q]]