import typing import sys from collections import deque, defaultdict input = lambda: sys.stdin.readline().strip() inf = 10**18 mod = 998244353 from typing import NamedTuple, Optional, List, Tuple, cast from heapq import heappush, heappop from typing import NamedTuple, Optional, List, cast class MFGraph: class Edge(NamedTuple): src: int dst: int cap: int flow: int class _Edge: def __init__(self, dst: int, cap: int) -> None: self.dst = dst self.cap = cap self.rev: Optional[MFGraph._Edge] = None def __init__(self, n: int) -> None: self._n = n self._g: List[List[MFGraph._Edge]] = [[] for _ in range(n)] self._edges: List[MFGraph._Edge] = [] def add_edge(self, src: int, dst: int, cap: int) -> int: assert 0 <= src < self._n assert 0 <= dst < self._n assert 0 <= cap m = len(self._edges) e = MFGraph._Edge(dst, cap) re = MFGraph._Edge(src, 0) e.rev = re re.rev = e self._g[src].append(e) self._g[dst].append(re) self._edges.append(e) return m def get_edge(self, i: int) -> Edge: assert 0 <= i < len(self._edges) e = self._edges[i] re = cast(MFGraph._Edge, e.rev) return MFGraph.Edge( re.dst, e.dst, e.cap + re.cap, re.cap ) def edges(self) -> List[Edge]: return [self.get_edge(i) for i in range(len(self._edges))] def change_edge(self, i: int, new_cap: int, new_flow: int) -> None: assert 0 <= i < len(self._edges) assert 0 <= new_flow <= new_cap e = self._edges[i] e.cap = new_cap - new_flow assert e.rev is not None e.rev.cap = new_flow def flow(self, s: int, t: int, flow_limit: Optional[int] = None) -> int: assert 0 <= s < self._n assert 0 <= t < self._n assert s != t if flow_limit is None: flow_limit = cast(int, sum(e.cap for e in self._g[s])) current_edge = [0] * self._n level = [0] * self._n def fill(arr: List[int], value: int) -> None: for i in range(len(arr)): arr[i] = value def bfs() -> bool: fill(level, self._n) queue = [] q_front = 0 queue.append(s) level[s] = 0 while q_front < len(queue): v = queue[q_front] q_front += 1 next_level = level[v] + 1 for e in self._g[v]: if e.cap == 0 or level[e.dst] <= next_level: continue level[e.dst] = next_level if e.dst == t: return True queue.append(e.dst) return False def dfs(lim: int) -> int: stack = [] edge_stack: List[MFGraph._Edge] = [] stack.append(t) while stack: v = stack[-1] if v == s: flow = min(lim, min(e.cap for e in edge_stack)) for e in edge_stack: e.cap -= flow assert e.rev is not None e.rev.cap += flow return flow next_level = level[v] - 1 while current_edge[v] < len(self._g[v]): e = self._g[v][current_edge[v]] re = cast(MFGraph._Edge, e.rev) if level[e.dst] != next_level or re.cap == 0: current_edge[v] += 1 continue stack.append(e.dst) edge_stack.append(re) break else: stack.pop() if edge_stack: edge_stack.pop() level[v] = self._n return 0 flow = 0 while flow < flow_limit: if not bfs(): break fill(current_edge, 0) while flow < flow_limit: f = dfs(flow_limit - flow) flow += f if f == 0: break return flow def min_cut(self, s: int) -> List[bool]: visited = [False] * self._n stack = [s] visited[s] = True while stack: v = stack.pop() for e in self._g[v]: if e.cap > 0 and not visited[e.dst]: visited[e.dst] = True stack.append(e.dst) return visited class MCFGraph: class Edge(NamedTuple): src: int dst: int cap: int flow: int cost: int class _Edge: def __init__(self, dst: int, cap: int, cost: int) -> None: self.dst = dst self.cap = cap self.cost = cost self.rev: Optional[MCFGraph._Edge] = None def __init__(self, n: int) -> None: self._n = n self._g: List[List[MCFGraph._Edge]] = [[] for _ in range(n)] self._edges: List[MCFGraph._Edge] = [] def add_edge(self, src: int, dst: int, cap: int, cost: int) -> int: assert 0 <= src < self._n assert 0 <= dst < self._n assert 0 <= cap m = len(self._edges) e = MCFGraph._Edge(dst, cap, cost) re = MCFGraph._Edge(src, 0, -cost) e.rev = re re.rev = e self._g[src].append(e) self._g[dst].append(re) self._edges.append(e) return m def get_edge(self, i: int) -> Edge: assert 0 <= i < len(self._edges) e = self._edges[i] re = cast(MCFGraph._Edge, e.rev) return MCFGraph.Edge( re.dst, e.dst, e.cap + re.cap, re.cap, e.cost ) def edges(self) -> List[Edge]: return [self.get_edge(i) for i in range(len(self._edges))] def flow(self, s: int, t: int, flow_limit: Optional[int] = None) -> Tuple[int, int]: return self.slope(s, t, flow_limit)[-1] def slope(self, s: int, t: int, flow_limit: Optional[int] = None) -> List[Tuple[int, int]]: assert 0 <= s < self._n assert 0 <= t < self._n assert s != t if flow_limit is None: flow_limit = cast(int, sum(e.cap for e in self._g[s])) dual = [0] * self._n prev: List[Optional[Tuple[int, MCFGraph._Edge]]] = [None] * self._n def refine_dual() -> bool: pq = [(0, s)] visited = [False] * self._n dist: List[Optional[int]] = [None] * self._n dist[s] = 0 while pq: dist_v, v = heappop(pq) if visited[v]: continue visited[v] = True if v == t: break dual_v = dual[v] for e in self._g[v]: w = e.dst if visited[w] or e.cap == 0: continue reduced_cost = e.cost - dual[w] + dual_v new_dist = dist_v + reduced_cost dist_w = dist[w] if dist_w is None or new_dist < dist_w: dist[w] = new_dist prev[w] = v, e heappush(pq, (new_dist, w)) else: return False dist_t = dist[t] for v in range(self._n): if visited[v]: dual[v] -= cast(int, dist_t) - cast(int, dist[v]) return True flow = 0 cost = 0 prev_cost_per_flow: Optional[int] = None result = [(flow, cost)] while flow < flow_limit: if not refine_dual(): break f = flow_limit - flow v = t while prev[v] is not None: u, e = cast(Tuple[int, MCFGraph._Edge], prev[v]) f = min(f, e.cap) v = u v = t while prev[v] is not None: u, e = cast(Tuple[int, MCFGraph._Edge], prev[v]) e.cap -= f assert e.rev is not None e.rev.cap += f v = u c = -dual[s] flow += f cost += f * c if c == prev_cost_per_flow: result.pop() result.append((flow, cost)) prev_cost_per_flow = c return result def solve(): # https://yukicoder.me/problems/no/2713 N, M = map(int, input().split()) A = list(map(int, input().split())) B = list(map(int, input().split())) g = MFGraph(N+M+2) # 燃やす埋める問題 # 0: 使わない(S) # N+M+1: 使う(T) # iを使うとx円の罰金 # Sからiにxの辺 for i in range(N): g.add_edge(0, i+1, A[i]) g.add_edge(i+1, N+M+1,0) # c1~ckを使うとP円の賞金 -> 1つでも使わないとP円の罰金 # cからKにinfの辺 # SからKに0, KからTにPの辺 for m in range(M): c = list(map(int, input().split()))[1:] for x in c: g.add_edge(x, N+1+m, inf) g.add_edge(0, N+1+m, 0) g.add_edge(N+1+m, N+M+1, B[m]) print(sum(B)-g.flow(0, N+M+1)) def main(): t = 1 for _ in range(t): solve() main()