#line 1 "template/template.hpp" #include #define rep(i, a, n) for (int i = (int)(a); i < (int)(n); i++) #define rrep(i, a, n) for (int i = ((int)(n)-1); i >= (int)(a); i--) #define Rep(i, a, n) for (i64 i = (i64)(a); i < (i64)(n); i++) #define RRep(i, a, n) for (i64 i = ((i64)(n)-i64(1)); i >= (i64)(a); i--) #define all(v) (v).begin(), (v).end() #define rall(v) (v).rbegin(), (v).rend() #line 2 "template/debug_template.hpp" #line 4 "template/debug_template.hpp" namespace ebi { #ifdef LOCAL #define debug(...) \ std::cerr << "LINE: " << __LINE__ << " [" << #__VA_ARGS__ << "]:", \ debug_out(__VA_ARGS__) #else #define debug(...) #endif void debug_out() { std::cerr << std::endl; } template void debug_out(Head h, Tail... t) { std::cerr << " " << h; if (sizeof...(t) > 0) std::cerr << " :"; debug_out(t...); } } // namespace ebi #line 2 "template/int_alias.hpp" #line 4 "template/int_alias.hpp" namespace ebi { using ld = long double; using std::size_t; using i8 = std::int8_t; using u8 = std::uint8_t; using i16 = std::int16_t; using u16 = std::uint16_t; using i32 = std::int32_t; using u32 = std::uint32_t; using i64 = std::int64_t; using u64 = std::uint64_t; using i128 = __int128_t; using u128 = __uint128_t; } // namespace ebi #line 2 "template/io.hpp" #line 5 "template/io.hpp" #include #line 7 "template/io.hpp" namespace ebi { template std::ostream &operator<<(std::ostream &os, const std::pair &pa) { return os << pa.first << " " << pa.second; } template std::istream &operator>>(std::istream &os, std::pair &pa) { return os >> pa.first >> pa.second; } template std::ostream &operator<<(std::ostream &os, const std::vector &vec) { for (std::size_t i = 0; i < vec.size(); i++) os << vec[i] << (i + 1 == vec.size() ? "" : " "); return os; } template std::istream &operator>>(std::istream &os, std::vector &vec) { for (T &e : vec) std::cin >> e; return os; } template std::ostream &operator<<(std::ostream &os, const std::optional &opt) { if (opt) { os << opt.value(); } else { os << "invalid value"; } return os; } void fast_io() { std::cout << std::fixed << std::setprecision(15); std::cin.tie(nullptr); std::ios::sync_with_stdio(false); } } // namespace ebi #line 2 "template/utility.hpp" #line 5 "template/utility.hpp" #line 2 "graph/base.hpp" #line 5 "graph/base.hpp" #include #line 7 "graph/base.hpp" #line 2 "data_structure/simple_csr.hpp" #line 6 "data_structure/simple_csr.hpp" namespace ebi { template struct simple_csr { simple_csr() = default; simple_csr(int n, const std::vector>& elements) : start(n + 1, 0), elist(elements.size()) { for (auto e : elements) { start[e.first + 1]++; } for (auto i : std::views::iota(0, n)) { start[i + 1] += start[i]; } auto counter = start; for (auto [i, e] : elements) { elist[counter[i]++] = e; } } simple_csr(const std::vector>& es) : start(es.size() + 1, 0) { int n = es.size(); for (auto i : std::views::iota(0, n)) { start[i + 1] = (int)es[i].size() + start[i]; } elist.resize(start.back()); for (auto i : std::views::iota(0, n)) { std::copy(es[i].begin(), es[i].end(), elist.begin() + start[i]); } } int size() const { return (int)start.size() - 1; } const auto operator[](int i) const { return std::ranges::subrange(elist.begin() + start[i], elist.begin() + start[i + 1]); } auto operator[](int i) { return std::ranges::subrange(elist.begin() + start[i], elist.begin() + start[i + 1]); } const auto operator()(int i, int l, int r) const { return std::ranges::subrange(elist.begin() + start[i] + l, elist.begin() + start[i + 1] + r); } auto operator()(int i, int l, int r) { return std::ranges::subrange(elist.begin() + start[i] + l, elist.begin() + start[i + 1] + r); } private: std::vector start; std::vector elist; }; } // namespace ebi #line 9 "graph/base.hpp" namespace ebi { template struct Edge { int from, to; T cost; int id; }; template struct Graph { using cost_type = E; using edge_type = Edge; Graph(int n_) : n(n_) {} Graph() = default; void add_edge(int u, int v, cost_type c) { buff.emplace_back(u, edge_type{u, v, c, m}); edges.emplace_back(edge_type{u, v, c, m++}); } void add_undirected_edge(int u, int v, cost_type c) { buff.emplace_back(u, edge_type{u, v, c, m}); buff.emplace_back(v, edge_type{v, u, c, m}); edges.emplace_back(edge_type{u, v, c, m}); m++; } void read_tree(int offset = 1, bool is_weighted = false) { read_graph(n - 1, offset, false, is_weighted); } void read_parents(int offset = 1) { for (auto i : std::views::iota(1, n)) { int p; std::cin >> p; p -= offset; add_undirected_edge(p, i, 1); } build(); } void read_graph(int e, int offset = 1, bool is_directed = false, bool is_weighted = false) { for (int i = 0; i < e; i++) { int u, v; std::cin >> u >> v; u -= offset; v -= offset; if (is_weighted) { cost_type c; std::cin >> c; if (is_directed) { add_edge(u, v, c); } else { add_undirected_edge(u, v, c); } } else { if (is_directed) { add_edge(u, v, 1); } else { add_undirected_edge(u, v, 1); } } } build(); } void build() { assert(!prepared); csr = simple_csr(n, buff); buff.clear(); prepared = true; } int size() const { return n; } int node_number() const { return n; } int edge_number() const { return m; } edge_type get_edge(int i) const { return edges[i]; } std::vector get_edges() const { return edges; } const auto operator[](int i) const { return csr[i]; } auto operator[](int i) { return csr[i]; } private: int n, m = 0; std::vector> buff; std::vector edges; simple_csr csr; bool prepared = false; }; } // namespace ebi #line 8 "template/utility.hpp" namespace ebi { template inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } template T safe_ceil(T a, T b) { if (a % b == 0) return a / b; else if (a >= 0) return (a / b) + 1; else return -((-a) / b); } template T safe_floor(T a, T b) { if (a % b == 0) return a / b; else if (a >= 0) return a / b; else return -((-a) / b) - 1; } constexpr i64 LNF = std::numeric_limits::max() / 4; constexpr int INF = std::numeric_limits::max() / 2; const std::vector dy = {1, 0, -1, 0, 1, 1, -1, -1}; const std::vector dx = {0, 1, 0, -1, 1, -1, 1, -1}; } // namespace ebi #line 2 "math/linear_sieve.hpp" #line 4 "math/linear_sieve.hpp" /* reference: https://37zigen.com/linear-sieve/ verify: https://atcoder.jp/contests/abc162/submissions/25095562 */ #line 12 "math/linear_sieve.hpp" namespace ebi { struct linear_sieve { private: using u64 = std::uint64_t; int n; std::vector sieve; std::vector prime; public: linear_sieve(int _n) : n(_n), sieve(std::vector(_n + 1, -1)) { for (int i = 2; i <= n; i++) { if (sieve[i] < 0) { sieve[i] = i; prime.emplace_back(i); } for (auto p : prime) { if (u64(p) * u64(i) > u64(n) || p > sieve[i]) break; sieve[p * i] = p; } } } std::vector prime_table() const { return prime; } std::vector> prime_power_table(int m) const { assert(m <= n); std::vector> table(m + 1, {1, 1}); for (int i = 2; i <= m; i++) { int p = sieve[i]; table[i] = {p, p}; if (sieve[i / p] == p) { table[i] = table[i / p]; table[i].second *= p; } } return table; } std::vector> factorize(int x) { assert(x <= n); std::vector> res; while (x > 1) { int p = sieve[x]; int exp = 0; if (p < 0) { res.emplace_back(x, 1); break; } while (sieve[x] == p) { x /= p; exp++; } res.emplace_back(p, exp); } return res; } std::vector divisors(int x) { assert(x <= n); std::vector res; res.emplace_back(1); auto pf = factorize(x); for (auto p : pf) { int sz = (int)res.size(); for (int i = 0; i < sz; i++) { int ret = 1; for (int j = 0; j < p.second; j++) { ret *= p.first; res.emplace_back(res[i] * ret); } } } return res; } template std::vector fast_zeta(const std::vector &f) { std::vector F = f; int sz = f.size(); assert(sz <= n + 1); for (int i = 2; i < sz; i++) { if (sieve[i] != i) continue; for (int j = (sz - 1) / i; j >= 1; j--) { F[j] += F[j * i]; } } return F; } template std::vector fast_mobius(const std::vector &F) { std::vector f = F; int sz = F.size(); assert(sz <= n + 1); for (int i = 2; i < sz; i++) { if (sieve[i] != i) continue; for (int j = 1; j * i < sz; j++) { f[j] -= f[j * i]; } } return f; } template std::vector pow_table(int k) { std::vector table(n + 1, 1); table[0] = 0; for (int i = 2; i <= n; i++) { if (sieve[i] == i) { table[i] = modint(i).pow(k); continue; } table[i] = table[sieve[i]] * table[i / sieve[i]]; } return table; } template std::vector inv_table() { return pow_table(modint::mod() - 2); } }; } // namespace ebi #line 3 "a.cpp" namespace ebi { linear_sieve sieve(2000); void main_() { int n; std::cin >> n; for(auto [p, c]: sieve.factorize(n)) { if((c + 1) % 2 == 0) { std::cout << "K\n"; return; } } std::cout << "P\n"; } } // namespace ebi int main() { ebi::fast_io(); int t = 1; std::cin >> t; while (t--) { ebi::main_(); } return 0; }