#include #include #define rep(i,n) for(int i=0;i struct FormalPowerSeries : vector< T > { using vector< T >::vector; using P = FormalPowerSeries; template FormalPowerSeries(Args...args): vector(args...) {} FormalPowerSeries(initializer_list a): vector(a.begin(),a.end()) {} using MULT = function< P(P, P) >; static MULT &get_mult() { static MULT mult = [&](P a, P b){ P res(convolution(a, b)); return res; }; return mult; } static void set_fft(MULT f) { get_mult() = f; } P operator+(const P &r) const { return P(*this) += r; } P operator+(const T &v) const { return P(*this) += v; } P operator*(const P &r) const { return P(*this) *= r; } P operator*(const T &v) const { return P(*this) *= v; } P &operator+=(const P &r) { if(r.size() > this->size()) this->resize(r.size()); for(int i = 0; i < int(r.size()); i++) (*this)[i] += r[i]; return *this; } P &operator+=(const T &r) { if(this->empty()) this->resize(1); (*this)[0] += r; return *this; } P &operator*=(const T &v) { const int n = (int) this->size(); for(int k = 0; k < n; k++) (*this)[k] *= v; return *this; } P &operator*=(const P &r) { if(this->empty() || r.empty()) { this->clear(); return *this; } assert(get_mult() != nullptr); return *this = get_mult()(*this, r); } P pre(int sz) const { return P(begin(*this), begin(*this) + min((int) this->size(), sz)); } P diff() const { const int n = (int) this->size(); P ret(max(0, n - 1)); for(int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i); return ret; } P integral() const { const int n = (int) this->size(); P ret(n + 1); ret[0] = T(0); for(int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1); return ret; } // F(0) must not be 0 P inv(int deg = -1) const { assert(((*this)[0]) != T(0)); const int n = (int) this->size(); if(deg == -1) deg = n; P ret({T(1) / (*this)[0]}); for(int i = 1; i < deg; i <<= 1) { ret = (ret * T(2) + ret * ret * pre(i << 1) * T(-1)).pre(i << 1); } return ret.pre(deg); } // F(0) must be 1 P log(int deg = -1) const { assert((*this)[0] == 1); const int n = (int) this->size(); if(deg == -1) deg = n; return (this->diff() * this->inv(deg)).pre(deg - 1).integral(); } // F(0) must be 0 P exp(int deg = -1) const { assert((*this)[0] == T(0)); const int n = (int) this->size(); if(deg == -1) deg = n; P ret({T(1)}); for(int i = 1; i < deg; i <<= 1) { ret = (ret * (pre(i << 1) + T(1) + ret.log(i << 1) * T(-1))).pre(i << 1); } return ret.pre(deg); } }; using fps = FormalPowerSeries; int main(){ int n, k; cin >> n >> k; assert(1 <= k && k <= n && n <= 200000); fps f(n + 1); for(int i = 1; i <= n; i++){ for(int j = 1; (long long)i * j * (k + 1) <= n; j++){ f[i * j * (k + 1)] -= mint(j).inv(); } } for(int i = 1; i <= n; i++){ for(int j = 1; i * j <= n; j++){ f[i * j] += mint(j).inv(); } } f = f.exp(); for(int i = 1; i <= n; i++){ cout << f[i].val(); if(i == n) cout << "\n"; else cout << " "; } return 0; }