import math def resolve(): import sys input = sys.stdin.readline q = int(input()) xa, ya, xb, yb, xc, yc = map(int, input().split()) if islinear((xa, ya), (xb, yb), (xc, yc)): x = (xa, ya) y = (xb, yb) z = (xc, yc) d = ( distance(x, y), distance(y, z), distance(z, x), ) mx = max(d) if d[0] == mx: c = center(x, y) d = distance(x, c) elif d[1] == mx: c = center(y, z) d = distance(y, c) else: c = center(z, x) d = distance(z, c) else: for x, y, z in ( ((xa, ya), (xb, yb), (xc, yc)), ((xb, yb), (xc, yc), (xa, ya)), ((xc, yc), (xa, ya), (xb, yb)), ): if distance(x, y) >= distance(y, z) + distance(z, x): c = center(x, y) d = Fraction(distance(x, y), 2) break else: c = circumcenter2((xa, ya), (xb, yb), (xc, yc)) d = distance(c, (xa, ya)) for _ in range(q): x, y = map(int, input().split()) print("Yes" if distance(c, (x, y)) <= d**2 else "No") class Fraction: def __init__(self, a: int = 0, b: int = 1) -> None: if isinstance(a, Fraction): self.a, self.b = a.a, a.b return a, b = int(a), int(b) if b == 0: raise ZeroDivisionError(f"{a}/{b}") if b < 0: a, b = -a, -b self.a, self.b = a, b self._reducion() def _reducion(self): g = math.gcd(self.a, self.b) self.a //= g self.b //= g def __add__(self, other): if isinstance(other, Fraction): g = math.gcd(self.b, other.b) x = other.b // g * self.a y = self.b // g * other.a return Fraction(x + y, self.b // g * other.b) return Fraction(self.a + other * self.b, self.b) def __iadd__(self, other): if isinstance(other, Fraction): g = math.gcd(self.b, other.b) self.a *= other.b // g self.a += self.b // g * other.a self.b *= other.b // g else: self.a += other * self.b self._reducion() return self __radd__ = __add__ def __sub__(self, other): if isinstance(other, Fraction): return self.__add__(-other) return self.__add__(-other) def __isub__(self, other): if isinstance(other, Fraction): return self.__iadd__(-other.a, other.b) return self.__iadd__(-other) def __rsub__(self, other): return -self + other def __mul__(self, other): if isinstance(other, Fraction): return Fraction(self.a * other.a, self.b * other.b) else: return Fraction(self.a * other, self.b) def __imul__(self, other): if isinstance(other, Fraction): self.a *= other.a self.b *= other.b else: self.a *= other self._reducion() return self __rmul__ = __mul__ def __floordiv__(self, other): if isinstance(other, Fraction): return self.__mul__(other.inverse()) return Fraction(self.a, self.b * other) def __ifloordiv__(self, other): if isinstance(other, Fraction): return self.__imul__(other.inverse()) self.b *= other self._reducion() return self def __rfloordiv__(self, other): return self.inverse() * other __truediv__ = __floordiv__ __itruediv__ = __ifloordiv__ __rtruediv__ = __rfloordiv__ def __pow__(self, other): if isinstance(other, Fraction): if other.b == 1: return self.__pow__(other.a) raise NotImplementedError return Fraction(self.a**other, self.b**other) def __ipow__(self, other): if isinstance(other, Fraction): if other.b == 1: return self.__ipow__(other.a) raise NotImplementedError self.a **= other self.b **= other return self def __rpow__(self, other): if self.b != 1: raise NotImplementedError return other**self.a def __floor__(self) -> int: return self.a // self.b def __ceil__(self) -> int: return (self.a + self.b - 1) // self.b __int__ = __floor__ def __float__(self): return self.a / self.b def inverse(self): if self.a == 0: raise ZeroDivisionError(f"tring to calcuate inverse of {self.a}/{self.b}") return Fraction(self.b, self.a) def __pos__(self): return Fraction(self.a, self.b) def __neg__(self): return Fraction(-self.a, self.b) def __abs__(self): return Fraction(abs(self.a), self.b) def __eq__(self, other) -> bool: if isinstance(other, Fraction): return self.a == other.a and self.b == other.b return self.a == self.b * other def __gt__(self, other): if isinstance(other, Fraction): return self.a * other.b > other.a * self.b return self.a > self.b * other def __ge__(self, other): if isinstance(other, Fraction): return self.a * other.b >= other.a * self.b return self.a >= self.b * other def __lt__(self, other): if isinstance(other, Fraction): return self.a * other.b < other.a * self.b return self.a < self.b * other def __le__(self, other): if isinstance(other, Fraction): return self.a * other.b <= other.a * self.b return self.a <= self.b * other def __str__(self) -> str: return f"{self.a}/{self.b}" __repr__ = __str__ def __hash__(self) -> int: return hash(self.__str__()) def distance(pa, pb): return sum([(i - j) ** 2 for i, j in zip(pa, pb)]) def islinear(pa, pb, pc): return (pa[0] - pb[0]) * (pa[1] - pc[1]) == (pa[0] - pc[0]) * (pa[1] - pb[1]) def center(x, y): return (Fraction((x[0] + y[0]), 2), Fraction((x[1] + y[1]), 2)) def circumcenter2(pa, pb, pc): # 外心 x0 = ( (pa[0] ** 2 + pa[1] ** 2) * (pb[1] - pc[1]) + (pb[0] ** 2 + pb[1] ** 2) * (pc[1] - pa[1]) + (pc[0] ** 2 + pc[1] ** 2) * (pa[1] - pb[1]) ) y0 = 2 * ((pb[1] - pc[1]) * (pa[0] - pb[0]) - (pa[1] - pb[1]) * (pb[0] - pc[0])) x1 = ( (pa[0] ** 2 + pa[1] ** 2) * (pb[0] - pc[0]) + (pb[0] ** 2 + pb[1] ** 2) * (pc[0] - pa[0]) + (pc[0] ** 2 + pc[1] ** 2) * (pa[0] - pb[0]) ) y1 = 2 * ((pb[0] - pc[0]) * (pa[1] - pb[1]) - (pa[0] - pb[0]) * (pb[1] - pc[1])) return ( Fraction(x0, y0) if y0 else 0, Fraction(x1, y1) if y1 else 0, ) if __name__ == "__main__": resolve()