class ModB: B = 998244353 length_bound = 10**6 #User definition length_max = min( length_bound , B ) inverse=None factorial=None factorial_inverse=None def SetModulo(B): ModB.B = int(B) assert(ModB.B > 0) ModB.length_max = min( ModB.length_bound , ModB.B ) ModB.inverse = [None,1 if ModB.B>1 else 0] ModB.factorial = [1 if ModB.B>1 else 0] ModB.factorial_inverse = [1 if ModB.B>1 else 0] def __init__(self,val,valid = False): self.val = int(val) if not valid and not(0 <= self.val < ModB.B):self.val %= ModB.B def ref(n): return n if n.__class__ == __class__ else ModB(n,True) def get(n): return n.val if n.__class__ == __class__ else n def copy(self): return ModB(self.val,True) def __eq__(self,x): return x==self.val def __ne__(self,other): return not( self == other ) def __iadd__(self,x): self.val += ModB.ref(x).val if self.val >= ModB.B:self.val -= ModB.B return self def __add__(self,x): a = self.copy() a += x return a def __radd__(self,x): return ModB(x + self.val) def __neg__(self): return ModB(ModB.B - self.val if self.val else 0,True) def __isub__(self,x): self.val -= ModB.ref(x).val if self.val < 0:self.val += ModB.B return self def __sub__(self,x): a = self.copy() a -= x return a def __rsub__(self,x): return ModB(x - self.val) def __mul__(self,x): return ModB.get(x) * self def __rmul__(self,x): return ModB(self.val * x) def __pow__(self,n): #Supported only if n>=0. answer = ModB(1) power = self.copy() while n > 0: if n&1:answer *= power.val power *= power.val n >>= 1 return answer def __xor__(self,n): #Supported only if B is a prime and val!=0, or n>=0. return self ** ( ( n * (2 - ModB.B) )if n < 0 else n ) def Inverse(n): #Supported only if B is a prime. if n < ModB.length_max: while len(ModB.inverse) <= n:ModB.inverse+=[ModB.B - ModB.inverse[ModB.B % len(ModB.inverse)] * ( ModB.B // len(ModB.inverse) ) % ModB.B] return ModB(ModB.inverse[n],True) else:return ModB(n) ** ( ModB.B - 2 ) def __truediv__(self,x): return ModB.Inverse(x) * self def __rtruediv__(self,x): return x * ModB(ModB.Inverse(self.val),True) def Factorial(n): while len(ModB.factorial) <= n:ModB.factorial+=[ModB.factorial[-1] * len(ModB.factorial) % ModB.B] return ModB(ModB.factorial[n],True) def FactorialInverse(n): #Supported only if B is a prime. while len(ModB.factorial_inverse) <= n:ModB.factorial_inverse+=[ModB.factorial_inverse[-1] * ModB.Inverse( len(ModB.factorial_inverse) ).val % ModB.B] return ModB(ModB.factorial_inverse[n],True) def Combination(n,m): #Supported only if B is a prime. return ModB.Factorial(n) * (ModB.FactorialInverse(m).val * ModB.FactorialInverse(n-m).val)if 0<=m<=n else ModB(0,True) ModB.inverse = [None,1 if ModB.B>1 else 0] ModB.factorial = [1 if ModB.B>1 else 0] ModB.factorial_inverse = [1 if ModB.B>1 else 0] I=input N=int(I()) A=list(map(int,I().split())) print((sum(A[i]*ModB.Combination(2*N-2-i,N-1)*(i+1)for i in range(N))/N).val)