import sys # sys.setrecursionlimit(200005) # sys.set_int_max_str_digits(200005) int1 = lambda x: int(x)-1 pDB = lambda *x: print(*x, end="\n", file=sys.stderr) p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr) def II(): return int(sys.stdin.readline()) def LI(): return list(map(int, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def LI1(): return list(map(int1, sys.stdin.readline().split())) def LLI1(rows_number): return [LI1() for _ in range(rows_number)] def SI(): return sys.stdin.readline().rstrip() # dij = [(0, 1), (-1, 0), (0, -1), (1, 0)] # dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)] # inf = -1-(-1 << 31) # inf = -1-(-1 << 62) # md = 10**9+7 md = 998244353 class Sieve: def __init__(self, n): self.plist = [2] min_prime_factor = [2, 0]*(n//2+1) for x in range(3, n+1, 2): if min_prime_factor[x] == 0: min_prime_factor[x] = x self.plist.append(x) if x**2 > n: continue for y in range(x**2, n+1, 2*x): if min_prime_factor[y] == 0: min_prime_factor[y] = x self.min_prime_factor = min_prime_factor def isprime(self, x): return self.min_prime_factor[x] == x def pf(self, x): pp, ee = [], [] while x > 1: mpf = self.min_prime_factor[x] if pp and mpf == pp[-1]: ee[-1] += 1 else: pp.append(mpf) ee.append(1) x //= mpf return pp, ee # unsorted def factor(self, a): ff = [1] pp, ee = self.pf(a) for p, e in zip(pp, ee): ff, gg = [], ff w = p for _ in range(e): for f in gg: ff.append(f*w) w *= p ff += gg return ff sv=Sieve(200005) # pp=sv.plist from collections import defaultdict class UnionFind: def __init__(self, n): self._tree = [-1]*n # number of connected component self.cnt = n def root(self, u): stack = [] while self._tree[u] >= 0: stack.append(u) u = self._tree[u] for v in stack: self._tree[v] = u return u def same(self, u, v): return self.root(u) == self.root(v) def merge(self, u, v): u, v = self.root(u), self.root(v) if u == v: return False if self._tree[u] > self._tree[v]: u, v = v, u self._tree[u] += self._tree[v] self._tree[v] = u self.cnt -= 1 return True # size of connected component def size(self, u): return -self._tree[self.root(u)] n=II() aa=LI() p2i=defaultdict(list) for i,a in enumerate(aa): pp,ee=sv.pf(a) for p in pp:p2i[p].append(i) uf=UnionFind(n) ans=0 for ii in p2i.values(): for i,j in zip(ii,ii[1:]):uf.merge(i,j) ans=min(2*uf.cnt,min(p2i)*(uf.cnt-1)) print(ans)