#include using namespace atcoder; #include using namespace internal; #include using namespace std; #include #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #define rep(i, n) for (int i = 0; i < (int)(n); i++) #define rep2(i,a,b) for (int i = (int)(a); i < (int)(b); i++) #define all(v) v.begin(),v.end() #define inc(x,l,r) ((l)<=(x)&&(x)<(r)) #define Unique(x) sort(all(x)), x.erase(unique(all(x)), x.end()) #define pcnt __builtin_popcountll #define pb push_back typedef long long ll; #define int ll using ld = long double; using vi = vector; using vs = vector; using P = pair; using vp = vector

; using ull = unsigned long long; using Bint = boost::multiprecision::cpp_int; template bool chmax(T1 &a, const T2 b) {if (a < b) {a = b; return true;} else return false; } template bool chmin(T1 &a, const T2 b) {if (a > b) {a = b; return true;} else return false; } template using priority_queue_greater = priority_queue, greater>; template ostream &operator<< (ostream &os, const pair &p){os << p.first <<" "<> (istream &is, modint1000000007 &m){ll in;is>>in;m=in;return is;} ostream &operator<< (ostream &os, const modint998244353 &m){os << m.val();return os;} istream &operator>> (istream &is, modint998244353 &m){ll in;is>>in;m=in;return is;} template istream &operator>>(istream& is,vector &v){for(T &in:v)is>>in;return is;} template void input(T&... a){(cin>> ... >> a);} #ifdef LOCAL template ostream &operator<<(ostream &os,const vector &v){os<<"\x1b[32m";rep(i,v.size())os< int print(T& a){cout << "\x1b[32m"<< a<< '\n' << "\x1b[0m";return 0;} template int print(const T&a, const Ts&... b){cout << "\x1b[32m" << a;(cout<<...<<(cout<<' ',b));cout<<'\n' << "\x1b[0m";return 0;} #else template ostream &operator<<(ostream &os,const vector &v){rep(i,v.size())os< int print(T& a){cout << a<< '\n';return 0;} template int print(const T&a, const Ts&... b){cout << a;(cout<<...<<(cout<<' ',b));cout<<'\n';return 0;} #endif #define VI(v,n) vi v(n); input(v) #define INT(...) int __VA_ARGS__; input(__VA_ARGS__) #define STR(...) string __VA_ARGS__; input(__VA_ARGS__) #define CHAR(...) char __VA_ARGS__; input(__VA_ARGS__) int sign(ll x){return x>0?1:x<0?-1:0;} ll ceil(ll x,ll y){assert(y!=0);if(sign(x)==sign(y))return (x+y-1)/y;return -((-x/y));} ll floor(ll x,ll y){assert(y!=0);if(sign(x)==sign(y))return x/y;if(y<0)x*=-1,y*=-1;return x/y-(x%y<0);} ll abs(ll x,ll y){return abs(x-y);} ll bit(int n){return 1ll< bool ins(string s,T t){return s.find(t)!=string::npos;} P operator+ (const P &p, const P &q){ return P{p.first+q.first,p.second+q.second};} P operator- (const P &p, const P &q){ return P{p.first-q.first,p.second-q.second};} int yesno(bool ok,string y="Yes",string n="No"){ cout<<(ok?y:n)< T pow_mod(T A, T N, T M) { T res = 1 % M; A %= M; while (N) { if (N & 1) res = (res * A) % M; A = (A * A) % M; N >>= 1; } return res; } bool is_prime(long long N) { if (N <= 1) return false; if (N == 2 || N == 3) return true; if (N % 2 == 0) return false; vector A = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; long long s = 0, d = N - 1; while (d % 2 == 0) { ++s; d >>= 1; } for (auto a : A) { if (a % N == 0) return true; long long t, x = pow_mod<__int128_t>(a, d, N); if (x != 1) { for (t = 0; t < s; ++t) { if (x == N - 1) break; x = __int128_t(x) * x % N; } if (t == s) return false; } } return true; } // Pollard のロー法 long long gcd(long long A, long long B) { A = abs(A), B = abs(B); if (B == 0) return A; else return gcd(B, A % B); } long long pollard(long long N) { if (N % 2 == 0) return 2; if (::is_prime(N)) return N; auto f = [&](long long x) -> long long { return (__int128_t(x) * x + 1) % N; }; long long step = 0; while (true) { ++step; long long x = step, y = f(x); while (true) { long long p = gcd(y - x + N, N); if (p == 0 || p == N) break; if (p != 1) return p; x = f(x); y = f(f(y)); } } } vector prime_factorize(long long N) { if (N == 1) return {}; long long p = pollard(N); if (p == N) return {p}; vector left = prime_factorize(p); vector right = prime_factorize(N / p); left.insert(left.end(), right.begin(), right.end()); sort(left.begin(), left.end()); return left; } signed main() { INT(q); while(q--){ INT(a); auto p = prime_factorize(a); yesno(p.size()==3); } return 0; }