#line 1 "test/yuki/yuki_1857.test.cpp" #define PROBLEM "https://yukicoder.me/problems/no/1857" #line 2 "convolution/ntt.hpp" #include #include #include #include #include #line 2 "math/internal_math.hpp" #line 4 "math/internal_math.hpp" namespace ebi { namespace internal { constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; if (m == 880803841) return 26; if (m == 924844033) return 5; return -1; } template constexpr int primitive_root = primitive_root_constexpr(m); } // namespace internal } // namespace ebi #line 2 "modint/base.hpp" #include #include #include namespace ebi { template concept Modint = requires(T a, T b) { a + b; a - b; a * b; a / b; a.inv(); a.val(); a.pow(std::declval()); T::mod(); }; template std::istream &operator>>(std::istream &os, mint &a) { long long x; os >> x; a = x; return os; } template std::ostream &operator<<(std::ostream &os, const mint &a) { return os << a.val(); } } // namespace ebi #line 11 "convolution/ntt.hpp" namespace ebi { namespace internal { template > struct ntt_info { static constexpr int rank2 = std::countr_zero((unsigned int)(mint::mod() - 1)); std::array root, inv_root; ntt_info() { root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2); inv_root[rank2] = root[rank2].inv(); for (int i = rank2 - 1; i >= 0; i--) { root[i] = root[i + 1] * root[i + 1]; inv_root[i] = inv_root[i + 1] * inv_root[i + 1]; } } }; template void butterfly(std::vector& a) { static const ntt_info info; int n = int(a.size()); int bit_size = std::countr_zero(a.size()); assert(n == (int)std::bit_ceil(a.size())); // bit reverse for (int i = 0, j = 1; j < n - 1; j++) { for (int k = n >> 1; k > (i ^= k); k >>= 1) ; if (j < i) { std::swap(a[i], a[j]); } } for (int bit = 0; bit < bit_size; bit++) { for (int i = 0; i < n / (1 << (bit + 1)); i++) { mint zeta1 = 1; mint zeta2 = info.root[1]; for (int j = 0; j < (1 << bit); j++) { int idx = i * (1 << (bit + 1)) + j; int jdx = idx + (1 << bit); mint p1 = a[idx]; mint p2 = a[jdx]; a[idx] = p1 + zeta1 * p2; a[jdx] = p1 + zeta2 * p2; zeta1 *= info.root[bit + 1]; zeta2 *= info.root[bit + 1]; } } } } template void butterfly_inv(std::vector& a) { static const ntt_info info; int n = int(a.size()); int bit_size = std::countr_zero(a.size()); assert(n == (int)std::bit_ceil(a.size())); // bit reverse for (int i = 0, j = 1; j < n - 1; j++) { for (int k = n >> 1; k > (i ^= k); k >>= 1) ; if (j < i) { std::swap(a[i], a[j]); } } for (int bit = 0; bit < bit_size; bit++) { for (int i = 0; i < n / (1 << (bit + 1)); i++) { mint zeta1 = 1; mint zeta2 = info.inv_root[1]; for (int j = 0; j < (1 << bit); j++) { int idx = i * (1 << (bit + 1)) + j; int jdx = idx + (1 << bit); mint p1 = a[idx]; mint p2 = a[jdx]; a[idx] = p1 + zeta1 * p2; a[jdx] = p1 + zeta2 * p2; zeta1 *= info.inv_root[bit + 1]; zeta2 *= info.inv_root[bit + 1]; } } } mint inv_n = mint(n).inv(); for (int i = 0; i < n; i++) { a[i] *= inv_n; } } } // namespace internal template std::vector convolution_naive(const std::vector& f, const std::vector& g) { if (f.empty() || g.empty()) return {}; int n = int(f.size()), m = int(g.size()); std::vector c(n + m - 1); if (n < m) { for (int j = 0; j < m; j++) { for (int i = 0; i < n; i++) { c[i + j] += f[i] * g[j]; } } } else { for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { c[i + j] += f[i] * g[j]; } } } return c; } template std::vector convolution(const std::vector& f, const std::vector& g) { if (f.empty() || g.empty()) return {}; if (std::min(f.size(), g.size()) < 60) return convolution_naive(f, g); int n = std::bit_ceil(f.size() + g.size() - 1); std::vector a(n), b(n); std::copy(f.begin(), f.end(), a.begin()); std::copy(g.begin(), g.end(), b.begin()); internal::butterfly(a); internal::butterfly(b); for (int i = 0; i < n; i++) { a[i] *= b[i]; } internal::butterfly_inv(a); a.resize(f.size() + g.size() - 1); return a; } } // namespace ebi #line 2 "fps/fps.hpp" #line 5 "fps/fps.hpp" #include #line 7 "fps/fps.hpp" #line 9 "fps/fps.hpp" namespace ebi { template (*convolution)(const std::vector &, const std::vector &)> struct FormalPowerSeries : std::vector { private: using std::vector::vector; using std::vector::vector::operator=; using FPS = FormalPowerSeries; public: FormalPowerSeries(const std::vector &a) { *this = a; } FPS operator+(const FPS &rhs) const noexcept { return FPS(*this) += rhs; } FPS operator-(const FPS &rhs) const noexcept { return FPS(*this) -= rhs; } FPS operator*(const FPS &rhs) const noexcept { return FPS(*this) *= rhs; } FPS operator/(const FPS &rhs) const noexcept { return FPS(*this) /= rhs; } FPS operator%(const FPS &rhs) const noexcept { return FPS(*this) %= rhs; } FPS operator+(const mint &rhs) const noexcept { return FPS(*this) += rhs; } FPS operator-(const mint &rhs) const noexcept { return FPS(*this) -= rhs; } FPS operator*(const mint &rhs) const noexcept { return FPS(*this) *= rhs; } FPS operator/(const mint &rhs) const noexcept { return FPS(*this) /= rhs; } FPS &operator+=(const FPS &rhs) noexcept { if (this->size() < rhs.size()) this->resize(rhs.size()); for (int i = 0; i < (int)rhs.size(); ++i) { (*this)[i] += rhs[i]; } return *this; } FPS &operator-=(const FPS &rhs) noexcept { if (this->size() < rhs.size()) this->resize(rhs.size()); for (int i = 0; i < (int)rhs.size(); ++i) { (*this)[i] -= rhs[i]; } return *this; } FPS &operator*=(const FPS &rhs) noexcept { *this = convolution(*this, rhs); return *this; } FPS &operator/=(const FPS &rhs) noexcept { int n = deg() - 1; int m = rhs.deg() - 1; if (n < m) { *this = {}; return *this; } *this = (*this).rev() * rhs.rev().inv(n - m + 1); (*this).resize(n - m + 1); std::reverse((*this).begin(), (*this).end()); return *this; } FPS &operator%=(const FPS &rhs) noexcept { *this -= *this / rhs * rhs; shrink(); return *this; } FPS &operator+=(const mint &rhs) noexcept { if (this->empty()) this->resize(1); (*this)[0] += rhs; return *this; } FPS &operator-=(const mint &rhs) noexcept { if (this->empty()) this->resize(1); (*this)[0] -= rhs; return *this; } FPS &operator*=(const mint &rhs) noexcept { for (int i = 0; i < deg(); ++i) { (*this)[i] *= rhs; } return *this; } FPS &operator/=(const mint &rhs) noexcept { mint inv_rhs = rhs.inv(); for (int i = 0; i < deg(); ++i) { (*this)[i] *= inv_rhs; } return *this; } FPS operator>>(int d) const { if (deg() <= d) return {}; FPS f = *this; f.erase(f.begin(), f.begin() + d); return f; } FPS operator<<(int d) const { FPS f = *this; f.insert(f.begin(), d, 0); return f; } FPS operator-() const { FPS g(this->size()); for (int i = 0; i < (int)this->size(); i++) g[i] = -(*this)[i]; return g; } FPS pre(int sz) const { return FPS(this->begin(), this->begin() + std::min(deg(), sz)); } FPS rev() const { auto f = *this; std::reverse(f.begin(), f.end()); return f; } FPS differential() const { int n = deg(); FPS g(std::max(0, n - 1)); for (int i = 0; i < n - 1; i++) { g[i] = (*this)[i + 1] * (i + 1); } return g; } FPS integral() const { int n = deg(); FPS g(n + 1); g[0] = 0; if (n > 0) g[1] = 1; auto mod = mint::mod(); for (int i = 2; i <= n; i++) g[i] = (-g[mod % i]) * (mod / i); for (int i = 0; i < n; i++) g[i + 1] *= (*this)[i]; return g; } FPS inv(int d = -1) const { int n = 1; if (d < 0) d = deg(); FPS g(n); g[0] = (*this)[0].inv(); while (n < d) { n <<= 1; g = (g * 2 - g * g * this->pre(n)).pre(n); } g.resize(d); return g; } FPS log(int d = -1) const { assert((*this)[0].val() == 1); if (d < 0) d = deg(); return ((*this).differential() * (*this).inv(d)).pre(d - 1).integral(); } FPS exp(int d = -1) const { assert((*this)[0].val() == 0); int n = 1; if (d < 0) d = deg(); FPS g(n); g[0] = 1; while (n < d) { n <<= 1; g = (g * (this->pre(n) - g.log(n) + 1)).pre(n); } g.resize(d); return g; } FPS pow(int64_t k, int d = -1) const { const int n = deg(); if (d < 0) d = n; if (k == 0) { FPS f(d); if (d > 0) f[0] = 1; return f; } for (int i = 0; i < n; i++) { if ((*this)[i] != 0) { mint rev = (*this)[i].inv(); FPS f = (((*this * rev) >> i).log(d) * k).exp(d); f *= (*this)[i].pow(k); f = (f << (i * k)).pre(d); if (f.deg() < d) f.resize(d); return f; } if (i + 1 >= (d + k - 1) / k) break; } return FPS(d); } int deg() const { return (*this).size(); } void shrink() { while ((!this->empty()) && this->back() == 0) this->pop_back(); } int count_terms() const { int c = 0; for (int i = 0; i < deg(); i++) { if ((*this)[i] != 0) c++; } return c; } std::optional sqrt(int d = -1) const; static FPS exp_x(int n) { FPS f(n); mint fact = 1; for (int i = 1; i < n; i++) fact *= i; f[n - 1] = fact.inv(); for (int i = n - 1; i >= 0; i--) f[i - 1] = f[i] * i; return f; } }; } // namespace ebi #line 2 "fps/product_of_fps.hpp" #line 4 "fps/product_of_fps.hpp" #line 6 "fps/product_of_fps.hpp" namespace ebi { template (*convolution)(const std::vector &, const std::vector &)> std::vector product_of_fps(std::vector> fs) { if (fs.empty()) return {1}; int i = 0; while (i + 1 < (int)fs.size()) { fs.emplace_back(convolution(fs[i], fs[i+1])); i += 2; } return fs.back(); } } // namespace ebi #line 2 "fps/sum_of_rational_fps.hpp" #line 5 "fps/sum_of_rational_fps.hpp" #line 7 "fps/sum_of_rational_fps.hpp" namespace ebi { template (*convolution)(const std::vector &, const std::vector &)> std::pair, std::vector> sum_of_rational_fps( std::vector, std::vector>> fs) { if (fs.empty()) { return {{0}, {1}}; } using P = std::pair, std::vector>; auto add = [&](const P &a, const P &b) -> P { int na = a.first.size() - 1, ma = a.second.size() - 1; int nb = b.first.size() - 1, mb = b.second.size() - 1; int n = std::max(na + mb, nb + ma); std::vector p(n + 1, 0); { auto f = convolution(a.first, b.second); for (int i = 0; i < na + mb + 1; i++) { p[i] += f[i]; } } { auto f = convolution(a.second, b.first); for (int i = 0; i < nb + ma + 1; i++) { p[i] += f[i]; } } return {p, convolution(a.second, b.second)}; }; int i = 0; while (i + 1 < (int)fs.size()) { fs.emplace_back(add(fs[i], fs[i + 1])); i += 2; } return fs.back(); } } // namespace ebi #line 2 "modint/modint.hpp" #line 5 "modint/modint.hpp" #line 7 "modint/modint.hpp" namespace ebi { template struct static_modint { private: using modint = static_modint; public: static constexpr int mod() { return m; } static constexpr modint raw(int v) { modint x; x._v = v; return x; } constexpr static_modint() : _v(0) {} constexpr static_modint(long long v) { v %= (long long)umod(); if (v < 0) v += (long long)umod(); _v = (unsigned int)v; } constexpr unsigned int val() const { return _v; } constexpr unsigned int value() const { return val(); } constexpr modint &operator++() { _v++; if (_v == umod()) _v = 0; return *this; } constexpr modint &operator--() { if (_v == 0) _v = umod(); _v--; return *this; } constexpr modint operator++(int) { modint res = *this; ++*this; return res; } constexpr modint operator--(int) { modint res = *this; --*this; return res; } constexpr modint &operator+=(const modint &rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } constexpr modint &operator-=(const modint &rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } constexpr modint &operator*=(const modint &rhs) { unsigned long long x = _v; x *= rhs._v; _v = (unsigned int)(x % (unsigned long long)umod()); return *this; } constexpr modint &operator/=(const modint &rhs) { return *this = *this * rhs.inv(); } constexpr modint operator+() const { return *this; } constexpr modint operator-() const { return modint() - *this; } constexpr modint pow(long long n) const { assert(0 <= n); modint x = *this, res = 1; while (n) { if (n & 1) res *= x; x *= x; n >>= 1; } return res; } constexpr modint inv() const { assert(_v); return pow(umod() - 2); } friend modint operator+(const modint &lhs, const modint &rhs) { return modint(lhs) += rhs; } friend modint operator-(const modint &lhs, const modint &rhs) { return modint(lhs) -= rhs; } friend modint operator*(const modint &lhs, const modint &rhs) { return modint(lhs) *= rhs; } friend modint operator/(const modint &lhs, const modint &rhs) { return modint(lhs) /= rhs; } friend bool operator==(const modint &lhs, const modint &rhs) { return lhs.val() == rhs.val(); } friend bool operator!=(const modint &lhs, const modint &rhs) { return !(lhs == rhs); } private: unsigned int _v = 0; static constexpr unsigned int umod() { return m; } }; using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; } // namespace ebi #line 1 "template/template.hpp" #include #define rep(i, a, n) for (int i = (int)(a); i < (int)(n); i++) #define rrep(i, a, n) for (int i = ((int)(n)-1); i >= (int)(a); i--) #define Rep(i, a, n) for (i64 i = (i64)(a); i < (i64)(n); i++) #define RRep(i, a, n) for (i64 i = ((i64)(n)-i64(1)); i >= (i64)(a); i--) #define all(v) (v).begin(), (v).end() #define rall(v) (v).rbegin(), (v).rend() #line 2 "template/debug_template.hpp" #line 4 "template/debug_template.hpp" namespace ebi { #ifdef LOCAL #define debug(...) \ std::cerr << "LINE: " << __LINE__ << " [" << #__VA_ARGS__ << "]:", \ debug_out(__VA_ARGS__) #else #define debug(...) #endif void debug_out() { std::cerr << std::endl; } template void debug_out(Head h, Tail... t) { std::cerr << " " << h; if (sizeof...(t) > 0) std::cerr << " :"; debug_out(t...); } } // namespace ebi #line 2 "template/int_alias.hpp" #line 4 "template/int_alias.hpp" namespace ebi { using ld = long double; using std::size_t; using i8 = std::int8_t; using u8 = std::uint8_t; using i16 = std::int16_t; using u16 = std::uint16_t; using i32 = std::int32_t; using u32 = std::uint32_t; using i64 = std::int64_t; using u64 = std::uint64_t; using i128 = __int128_t; using u128 = __uint128_t; } // namespace ebi #line 2 "template/io.hpp" #line 7 "template/io.hpp" namespace ebi { template std::ostream &operator<<(std::ostream &os, const std::pair &pa) { return os << pa.first << " " << pa.second; } template std::istream &operator>>(std::istream &os, std::pair &pa) { return os >> pa.first >> pa.second; } template std::ostream &operator<<(std::ostream &os, const std::vector &vec) { for (std::size_t i = 0; i < vec.size(); i++) os << vec[i] << (i + 1 == vec.size() ? "" : " "); return os; } template std::istream &operator>>(std::istream &os, std::vector &vec) { for (T &e : vec) std::cin >> e; return os; } template std::ostream &operator<<(std::ostream &os, const std::optional &opt) { if (opt) { os << opt.value(); } else { os << "invalid value"; } return os; } void fast_io() { std::cout << std::fixed << std::setprecision(15); std::cin.tie(nullptr); std::ios::sync_with_stdio(false); } } // namespace ebi #line 2 "template/utility.hpp" #line 5 "template/utility.hpp" #line 2 "graph/base.hpp" #line 5 "graph/base.hpp" #include #line 7 "graph/base.hpp" #line 2 "data_structure/simple_csr.hpp" #line 6 "data_structure/simple_csr.hpp" namespace ebi { template struct simple_csr { simple_csr() = default; simple_csr(int n, const std::vector>& elements) : start(n + 1, 0), elist(elements.size()) { for (auto e : elements) { start[e.first + 1]++; } for (auto i : std::views::iota(0, n)) { start[i + 1] += start[i]; } auto counter = start; for (auto [i, e] : elements) { elist[counter[i]++] = e; } } simple_csr(const std::vector>& es) : start(es.size() + 1, 0) { int n = es.size(); for (auto i : std::views::iota(0, n)) { start[i + 1] = (int)es[i].size() + start[i]; } elist.resize(start.back()); for (auto i : std::views::iota(0, n)) { std::copy(es[i].begin(), es[i].end(), elist.begin() + start[i]); } } int size() const { return (int)start.size() - 1; } const auto operator[](int i) const { return std::ranges::subrange(elist.begin() + start[i], elist.begin() + start[i + 1]); } auto operator[](int i) { return std::ranges::subrange(elist.begin() + start[i], elist.begin() + start[i + 1]); } const auto operator()(int i, int l, int r) const { return std::ranges::subrange(elist.begin() + start[i] + l, elist.begin() + start[i + 1] + r); } auto operator()(int i, int l, int r) { return std::ranges::subrange(elist.begin() + start[i] + l, elist.begin() + start[i + 1] + r); } private: std::vector start; std::vector elist; }; } // namespace ebi #line 9 "graph/base.hpp" namespace ebi { template struct Edge { int from, to; T cost; int id; }; template struct Graph { using cost_type = E; using edge_type = Edge; Graph(int n_) : n(n_) {} Graph() = default; void add_edge(int u, int v, cost_type c) { buff.emplace_back(u, edge_type{u, v, c, m}); edges.emplace_back(edge_type{u, v, c, m++}); } void add_undirected_edge(int u, int v, cost_type c) { buff.emplace_back(u, edge_type{u, v, c, m}); buff.emplace_back(v, edge_type{v, u, c, m}); edges.emplace_back(edge_type{u, v, c, m}); m++; } void read_tree(int offset = 1, bool is_weighted = false) { read_graph(n - 1, offset, false, is_weighted); } void read_parents(int offset = 1) { for (auto i : std::views::iota(1, n)) { int p; std::cin >> p; p -= offset; add_undirected_edge(p, i, 1); } build(); } void read_graph(int e, int offset = 1, bool is_directed = false, bool is_weighted = false) { for (int i = 0; i < e; i++) { int u, v; std::cin >> u >> v; u -= offset; v -= offset; if (is_weighted) { cost_type c; std::cin >> c; if (is_directed) { add_edge(u, v, c); } else { add_undirected_edge(u, v, c); } } else { if (is_directed) { add_edge(u, v, 1); } else { add_undirected_edge(u, v, 1); } } } build(); } void build() { assert(!prepared); csr = simple_csr(n, buff); buff.clear(); prepared = true; } int size() const { return n; } int node_number() const { return n; } int edge_number() const { return m; } edge_type get_edge(int i) const { return edges[i]; } std::vector get_edges() const { return edges; } const auto operator[](int i) const { return csr[i]; } auto operator[](int i) { return csr[i]; } private: int n, m = 0; std::vector> buff; std::vector edges; simple_csr csr; bool prepared = false; }; } // namespace ebi #line 8 "template/utility.hpp" namespace ebi { template inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } template T safe_ceil(T a, T b) { if (a % b == 0) return a / b; else if (a >= 0) return (a / b) + 1; else return -((-a) / b); } template T safe_floor(T a, T b) { if (a % b == 0) return a / b; else if (a >= 0) return a / b; else return -((-a) / b) - 1; } constexpr i64 LNF = std::numeric_limits::max() / 4; constexpr int INF = std::numeric_limits::max() / 2; const std::vector dy = {1, 0, -1, 0, 1, 1, -1, -1}; const std::vector dx = {0, 1, 0, -1, 1, -1, 1, -1}; } // namespace ebi #line 9 "test/yuki/yuki_1857.test.cpp" namespace ebi { using mint = modint998244353; using FPS = FormalPowerSeries; void main_() { int n, s; std::cin >> n >> s; std::vector p(n); mint inv_s = mint(s).inv(); rep(i, 0, n) { std::cin >> p[i]; p[i] *= inv_s; } std::vector> fs(n); std::vector, std::vector>> gs(n); rep(i, 0, n) { fs[i] = {1, p[i]}; gs[i] = {{0, 0, p[i] * p[i]}, {1, p[i]}}; } auto lhs = product_of_fps(fs); auto rhs = sum_of_rational_fps(gs); auto f = (FPS(lhs) * (FPS(rhs.first) * FPS(rhs.second).inv(n+2)).pre(n+2)).pre(n+2); mint ans = 0; mint fact = 1; rep(i,2,n+2) { ans += f[i] * fact * i; debug(f[i] * fact); fact *= i; } std::cout << ans << '\n'; } } // namespace ebi int main() { ebi::fast_io(); int t = 1; // std::cin >> t; while (t--) { ebi::main_(); } return 0; }