#line 1 "main.cpp" #define PROBLEM "https://yukicoder.me/problems/no/900" #line 2 "/root/AtCoder/Halc-Library/DataStructure/LazySegmentTree.hpp" #include #include #include #include #include template struct LazySegmentTree { using T = typename M::T; using F = typename M::F; int32_t siz; std::vector tree; std::vector del; LazySegmentTree(int32_t sz) { siz = sz; tree = std::vector(siz << 1, M::e); del = std::vector(siz << 1, M::id); } LazySegmentTree(std::vector def) { siz = def.size(); tree = std::vector(siz << 1, M::e); del = std::vector(siz << 1, M::id); for (int32_t i = 0; i < siz; i++) { tree[i + siz] = def[i]; } for (int32_t i = siz - 1; i > 0; i--) { tree[i] = M::op(tree[i << 1], tree[(i << 1) + 1]); } } inline T _get(int32_t pos) { return tree[pos]; } void _calc(int32_t p) { p >>= 1; while (p > 0) { tree[p] = M::op(_get(p << 1), _get((p << 1) + 1)); p >>= 1; } } inline void _del_segment(int32_t p) { tree[p << 1] = M::mapp(del[p], tree[p << 1]); del[p << 1] = M::comp(del[p], del[p << 1]); tree[(p << 1) + 1] = M::mapp(del[p], tree[(p << 1) + 1]); del[(p << 1) + 1] = M::comp(del[p], del[(p << 1) + 1]); del[p] = M::id; } void _delay(int32_t p) { int32_t length = 32 - std::countl_zero((uint32_t)p); for (int32_t i = length - 1; i >= 1; i--) { _del_segment(p >> i); } } void set(int32_t p, T v) { p += siz; _delay(p); tree[p] = v; del[p] = M::id; _calc(p); } T get(int32_t p) { _delay(p + siz); return _get(p + siz); } void apply(int32_t lf, int32_t ri, F f) { lf += siz; ri += siz; int32_t dl = lf >> (std::countr_zero((uint32_t)lf)); int32_t dr = ri >> (std::countr_zero((uint32_t)ri)); _delay(dl); _delay(dr - 1); while (lf < ri) { if (lf & 1) { tree[lf] = M::mapp(f, tree[lf]); del[lf] = M::comp(f, del[lf]); lf++; } if (ri & 1) { ri--; tree[ri] = M::mapp(f, tree[ri]); del[ri] = M::comp(f, del[ri]); } lf >>= 1; ri >>= 1; } _calc(dl); _calc(dr - 1); } T prod(int32_t lf, int32_t ri) { lf += siz; ri += siz; int32_t dl = lf >> (std::countr_zero((uint32_t)lf)); int32_t dr = ri >> (std::countr_zero((uint32_t)ri)); _delay(dl); _delay(dr - 1); T rel = M::e; T rer = M::e; while (lf < ri) { if (lf & 1) { rel = M::op(rel, _get(lf)); lf++; } if (ri & 1) { ri--; rer = M::op(_get(ri), rer); } lf >>= 1; ri >>= 1; } return M::op(rel, rer); } template int32_t max_right(int lf) { return max_right(lf, [](T x) { return f(x); }); } template int32_t max_right(int32_t lf, F f) { lf += siz; int32_t ri = siz << 1; int32_t dl = lf >> (std::countr_zero((uint32_t)lf)); int32_t dr = ri >> (std::countr_zero((uint32_t)ri)); _delay(dl); _delay(dr - 1); std::queue lfp; std::stack rip; while (lf < ri) { if (lf & 1) { lfp.push(lf); lf++; } if (ri & 1) { ri--; rip.push(ri); } lf >>= 1; ri >>= 1; } T val = M::e; while (!lfp.empty()) { int32_t i = lfp.front(); lfp.pop(); if (!f(M::op(val, _get(i)))) { while (i < siz) { _del_segment(i); i <<= 1; if (f(M::op(val, _get(i)))) { val = M::op(val, _get(i)); i++; } } return i - siz; } val = M::op(val, _get(i)); } while (!rip.empty()) { int32_t i = rip.top(); rip.pop(); if (!f(M::op(val, _get(i)))) { while (i < siz) { _del_segment(i); i <<= 1; if (f(M::op(val, _get(i)))) { val = M::op(val, _get(i)); i++; } } return i - siz; } val = M::op(val, _get(i)); } return siz; } template int32_t min_left(int ri) { return min_left(ri, [](T x) { return f(x); }); } template int32_t min_left(int32_t ri, F f) { ri += siz; int32_t lf = siz; int32_t dl = lf >> (std::countr_zero((uint32_t)lf)); int32_t dr = ri >> (std::countr_zero((uint32_t)ri)); _delay(dl); _delay(dr - 1); std::queue rip; std::stack lfp; while (lf < ri) { if (lf & 1) { lfp.push(lf); lf++; } if (ri & 1) { ri--; rip.push(ri); } lf >>= 1; ri >>= 1; } T val = M::e; while (!rip.empty()) { int32_t i = rip.front(); rip.pop(); if (!f(M::op(val, _get(i)))) { while (i < siz) { _del_segment(i); i <<= 1; i++; if (f(M::op(_get(i), val))) { val = M::op(_get(i), val); i--; } } return i - siz + 1; } val = M::op(_get(i), val); } while (!lfp.empty()) { int32_t i = lfp.top(); lfp.pop(); if (!f(M::op(val, _get(i)))) { while (i < siz) { _del_segment(i); i <<= 1; i++; if (f(M::op(_get(i), val))) { val = M::op(_get(i), val); i--; } } return i - siz + 1; } val = M::op(_get(i), val); } return 0; } int32_t size() { return siz; } }; #line 5 "/root/AtCoder/Halc-Library/Tree/HLDecomposition.hpp" #line 4 "/root/AtCoder/Halc-Library/Graph/Graph.hpp" template struct Edge { int32_t from, to; T cost; int32_t idx; Edge() = default; Edge(int32_t from, int32_t to, T cost = 1, int32_t idx = -1) : from(from), to(to), cost(cost), idx(idx) {} operator int32_t() { return to; } void reverse() { std::swap(from, to); } }; template struct Graph { std::vector>> gr; int32_t eds = 0; Graph() = default; Graph(int32_t n) { gr.resize(n); } void add_edge(int32_t from, int32_t to, T cost = 1, bool directed = false) { gr[from].emplace_back(from, to, cost, eds); if (!directed) { gr[to].emplace_back(to, from, cost, eds); } eds++; } void add_directed_edge(int32_t from, int32_t to, T cost = 1) { gr[from].emplace_back(from, to, cost, eds); eds++; } inline std::vector> &operator[](const int32_t &p) { return gr[p]; } int32_t size() { return gr.size(); } }; template Graph reverse_edges(Graph &gr) { Graph ret(gr.size()); for (int32_t i = 0; i < gr.size(); i++) { for (Edge j : gr[i]) { ret[j].emplace_back(j); ret[j].back().reverse(); } } return ret; } #line 7 "/root/AtCoder/Halc-Library/Tree/HLDecomposition.hpp" struct HLDecomposition { struct Segment { int32_t lf, ri; bool rev; }; int32_t sz; std::vector tree_sz; std::vector depth; std::vector order; std::vector path_roots; std::vector parent; std::vector out; template void _build(int32_t pos, Graph &tree) { order[pos] = sz; sz++; int32_t mx = -1, mp = -1; for (int32_t i : tree[pos]) { if (i == parent[pos]) continue; if (mx < tree_sz[i]) { mx = tree_sz[i]; mp = i; } } if (mx == -1) { out[pos] = sz; return; } path_roots[mp] = path_roots[pos]; _build(mp, tree); for (int32_t i : tree[pos]) { if (i == parent[pos]) continue; if (i == mp) continue; path_roots[i] = i; _build(i, tree); } out[pos] = sz; } template int32_t _calc_sz(int32_t pos, Graph &tree) { if (tree_sz[pos] != -1) return tree_sz[pos]; tree_sz[pos] = 1; for (int32_t i : tree[pos]) { if (parent[pos] != i) { parent[i] = pos; depth[i] = depth[pos] + 1; tree_sz[pos] += _calc_sz(i, tree); } } return tree_sz[pos]; } template HLDecomposition(Graph &tree, int32_t root = 0) { sz = tree.size(); tree_sz.resize(sz, -1); depth.resize(sz, -1); parent.resize(sz, -1); depth[root] = 0; _calc_sz(root, tree); order.resize(sz, -1); out.resize(sz, -1); path_roots.resize(sz, -1); sz = 0; path_roots[root] = root; _build(root, tree); } int32_t operator[](int32_t p) { return order[p]; } Segment subtree(int32_t pos) { return {order[pos], out[pos], false}; } std::vector path(int32_t s, int32_t t) { std::vector ret; std::stack right; while (path_roots[s] != path_roots[t]) { if (depth[path_roots[s]] > depth[path_roots[t]]) { ret.emplace_back( Segment{order[path_roots[s]], order[s] + 1, true}); s = parent[path_roots[s]]; } else { right.push({order[path_roots[t]], order[t] + 1, false}); t = parent[path_roots[t]]; } } if (depth[s] < depth[t]) { ret.emplace_back(Segment{order[s], order[t] + 1, false}); } else { ret.emplace_back(Segment{order[t], order[s] + 1, true}); } while (!right.empty()) { ret.push_back(right.top()); right.pop(); } return ret; } int32_t lca(int32_t s, int32_t t) { while (path_roots[s] != path_roots[t]) { if (depth[path_roots[s]] > depth[path_roots[t]]) { s = parent[path_roots[s]]; } else { t = parent[path_roots[t]]; } } if (depth[s] < depth[t]) return s; return t; } }; #line 2 "/root/AtCoder/Halc-Library/Template/Template.hpp" #include using namespace std; #line 8 "/root/AtCoder/Halc-Library/Template/InOut.hpp" inline void scan() {} inline void scan(int &a) { std::cin >> a; } inline void scan(unsigned &a) { std::cin >> a; } inline void scan(long &a) { std::cin >> a; } inline void scan(long long &a) { std::cin >> a; } inline void scan(unsigned long long &a) { std::cin >> a; } inline void scan(char &a) { std::cin >> a; } inline void scan(float &a) { std::cin >> a; } inline void scan(double &a) { std::cin >> a; } inline void scan(long double &a) { std::cin >> a; } inline void scan(std::vector &vec) { for (int32_t i = 0; i < vec.size(); i++) { int a; scan(a); vec[i] = a; } } inline void scan(std::string &a) { std::cin >> a; } template inline void scan(std::vector &vec); template inline void scan(std::array &vec); template inline void scan(std::pair &p); template inline void scan(T (&vec)[size]); template inline void scan(std::vector &vec) { for (auto &i : vec) scan(i); } template inline void scan(std::deque &vec) { for (auto &i : vec) scan(i); } template inline void scan(std::array &vec) { for (auto &i : vec) scan(i); } template inline void scan(std::pair &p) { scan(p.first); scan(p.second); } template inline void scan(T (&vec)[size]) { for (auto &i : vec) scan(i); } template inline void scan(T &a) { std::cin >> a; } inline void in() {} template inline void in(Head &head, Tail &...tail) { scan(head); in(tail...); } inline void print() { std::cout << ' '; } inline void print(const bool &a) { std::cout << a; } inline void print(const int &a) { std::cout << a; } inline void print(const unsigned &a) { std::cout << a; } inline void print(const long &a) { std::cout << a; } inline void print(const long long &a) { std::cout << a; } inline void print(const unsigned long long &a) { std::cout << a; } inline void print(const char &a) { std::cout << a; } inline void print(const char a[]) { std::cout << a; } inline void print(const float &a) { std::cout << a; } inline void print(const double &a) { std::cout << a; } inline void print(const long double &a) { std::cout << a; } inline void print(const std::string &a) { for (auto &&i : a) print(i); } template inline void print(const std::vector &vec); template inline void print(const std::array &vec); template inline void print(const std::pair &p); template inline void print(const T (&vec)[size]); template inline void print(const std::vector &vec) { if (vec.empty()) return; print(vec[0]); for (auto i = vec.begin(); ++i != vec.end();) { std::cout << ' '; print(*i); } } template inline void print(const std::deque &vec) { if (vec.empty()) return; print(vec[0]); for (auto i = vec.begin(); ++i != vec.end();) { std::cout << ' '; print(*i); } } template inline void print(const std::array &vec) { print(vec[0]); for (auto i = vec.begin(); ++i != vec.end();) { std::cout << ' '; print(*i); } } template inline void print(const std::pair &p) { print(p.first); std::cout << ' '; print(p.second); } template inline void print(const T (&vec)[size]) { print(vec[0]); for (auto i = vec; ++i != end(vec);) { std::cout << ' '; print(*i); } } template inline void print(const T &a) { std::cout << a; } inline void out() { std::cout << '\n'; } template inline void out(const T &t) { print(t); std::cout << '\n'; } template inline void out(const Head &head, const Tail &...tail) { print(head); std::cout << ' '; out(tail...); } inline void Yes(bool i = true) { out(i ? "Yes" : "No"); } inline void No(bool i = true) { out(i ? "No" : "Yes"); } struct IOsetup { IOsetup() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::setprecision(10); } } iosetup; #line 8 "/root/AtCoder/Halc-Library/Template/Util.hpp" using ll = long long; using ld = long double; using ull = unsigned long long; using uint = unsigned int; using pll = std::pair; using pii = std::pair; using vl = std::vector; using vvl = std::vector>; using pdd = std::pair; using tuplis = std::array; template using pq = std::priority_queue, std::greater>; constexpr ll LINF = (1LL << 62) - (1LL << 31); constexpr int32_t INF = INT_MAX >> 1; constexpr ll MINF = 1LL << 40; constexpr ld DINF = std::numeric_limits::infinity(); constexpr int32_t MODD = 1000000007; constexpr int32_t MOD = 998244353; constexpr ld EPS = 1e-9; constexpr ld PI = 3.1415926535897932; const ll four[] = {0, 1, 0, -1, 0}; const ll eight[] = {0, 1, 1, 0, -1, -1, 1, -1, 0}; template bool chmin(T &a, const T &b) { if (a > b) { a = b; return true; } else return false; } template bool chmax(T &a, const T &b) { if (a < b) { a = b; return true; } else return false; } template ll sum(const T &a) { return accumulate(std::begin(a), std::end(a), 0LL); } template ld dsum(const T &a) { return accumulate(std::begin(a), std::end(a), 0.0L); } template auto min(const T &a) { return *min_element(std::begin(a), std::end(a)); } template auto max(const T &a) { return *max_element(std::begin(a), std::end(a)); } #line 1 "/root/AtCoder/Halc-Library/Template/Macro.hpp" #define _overload3(_1, _2, _3, name, ...) name #define _overload4(_1, _2, _3, _4, name, ...) name #define _rep1(i, n) for (ll i = 0; i < (n); i++) #define _rep2(i, a, b) for (ll i = (a); i < (b); i++) #define _rep3(i, a, b, c) for (ll i = (a); i < (b); i += (c)) #define rep(...) _overload4(__VA_ARGS__, _rep3, _rep2, _rep1)(__VA_ARGS__) #define _rrep1(i, n) for (int i = (n) - 1; i >= 0; i--) #define _rrep2(i, a, b) for (int i = (b) - 1; i >= (a); i--) #define rrep(...) _overload3(__VA_ARGS__, _rrep2, _rrep1)(__VA_ARGS__) #define each(i, ...) for (auto&& i : __VA_ARGS__) #define all(i) std::begin(i), std::end(i) #define rall(i) std::rbegin(i), std::rend(i) #define len(x) ((ll)(x).size()) #define fi first #define se second #define uniq(x) x.erase(unique(all(x)), std::end(x)) #define vec(type, name, ...) vector name(__VA_ARGS__); #define vv(type, name, h, ...) std::vector> name(h, std::vector(__VA_ARGS__)); #define INT(...) int __VA_ARGS__; in(__VA_ARGS__) #define LL(...) long long __VA_ARGS__; in(__VA_ARGS__) #define ULL(...) unsigned long long __VA_ARGS__; in(__VA_ARGS__) #define STR(...) std::string __VA_ARGS__; in(__VA_ARGS__) #define CHR(...) char __VA_ARGS__; in(__VA_ARGS__) #define LD(...) long double __VA_ARGS__; in(__VA_ARGS__) #define VEC(type, name, size) std::vector name(size); in(name) #define VV(type, name, h, w) std::vector> name(h, std::vector(w)); in(name) #line 5 "main.cpp" struct ops { using T = pll; using F = ll; static T op(T x, T y) { return {x.fi + y.fi, x.se + y.se}; } static inline T e = {0, 0}; static T mapp(F f, T x) { return {x.fi, x.se + x.fi * f}; } static F comp(F f, F g) { return f + g; } static inline F id = 0; }; void solve() { LL(N); Graph gr(N); rep(i, N - 1) { LL(u,v, w); gr.add_edge(u, v,w); } HLDecomposition hld(gr); LazySegmentTree seg(N); seg.set(0,{1,0}); rep(i, N) { each(j,gr[i]){ if(hld.depth[i]