mod = 998244353 imag = 911660635 iimag = 86583718 rate2 = (0, 911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601, 842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899, 0) irate2 = (0, 86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960, 354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235, 0) rate3 = (0, 372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099, 183021267, 402682409, 631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204, 0) irate3 = (0, 509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500, 771127074, 985925487, 262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681, 0) def fft(a): n = len(a) h = (n - 1).bit_length() le = 0 while le < h: if h == le + 1: p = 1 rot = 1 for s in range(1 << le): offset = s << (h - le) for i in range(p): l = a[i + offset] r = a[i + offset + p] * rot a[i + offset] = (l + r) % mod a[i + offset + p] = (l - r) % mod rot *= rate2[(~s & -~s).bit_length()] rot %= mod le += 1 else: p = 1 << (h - le - 2) rot = 1 for s in range(1 << le): rot2 = rot * rot % mod rot3 = rot2 * rot % mod offset = s << (h - le) for i in range(p): a0 = a[i + offset] a1 = a[i + offset + p] * rot a2 = a[i + offset + p * 2] * rot2 a3 = a[i + offset + p * 3] * rot3 a1na3imag = (a1 - a3) % mod * imag a[i + offset] = (a0 + a2 + a1 + a3) % mod a[i + offset + p] = (a0 + a2 - a1 - a3) % mod a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % mod a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % mod rot *= rate3[(~s & -~s).bit_length()] rot %= mod le += 2 def fft_inv(a): n = len(a) h = (n - 1).bit_length() le = h while le: if le == 1: p = 1 << (h - le) irot = 1 for s in range(1 << (le - 1)): offset = s << (h - le + 1) for i in range(p): l = a[i + offset] r = a[i + offset + p] a[i + offset] = (l + r) % mod a[i + offset + p] = (l - r) * irot % mod irot *= irate2[(~s & -~s).bit_length()] irot %= mod le -= 1 else: p = 1 << (h - le) irot = 1 for s in range(1 << (le - 2)): irot2 = irot * irot % mod irot3 = irot2 * irot % mod offset = s << (h - le + 2) for i in range(p): a0 = a[i + offset] a1 = a[i + offset + p] a2 = a[i + offset + p * 2] a3 = a[i + offset + p * 3] a2na3iimag = (a2 - a3) * iimag % mod a[i + offset] = (a0 + a1 + a2 + a3) % mod a[i + offset + p] = (a0 - a1 + a2na3iimag) * irot % mod a[i + offset + p * 2] = (a0 + a1 - a2 - a3) * irot2 % mod a[i + offset + p * 3] = (a0 - a1 - a2na3iimag) * irot3 % mod irot *= irate3[(~s & -~s).bit_length()] irot %= mod le -= 2 def ntt(a): if len(a) <= 1: return fft(a) def ntt_inv(a): if len(a) <= 1: return fft_inv(a) iv = pow(len(a),mod-2,mod) for i in range(len(a)): a[i] = a[i] * iv % mod def convolute(s, t): a = s[:] b = t[:] n = len(a) m = len(b) z = 1 << (n + m - 2).bit_length() a += [0] * (z - n) b += [0] * (z - m) fft(a) fft(b) for i in range(z): a[i] *= b[i] a[i] %= mod fft_inv(a) a = a[:n + m - 1] iz = pow(z, mod - 2, mod) for i in range(n+m-1): a[i] = (a[i] * iz) % mod return a def fps_inv(a,deg = -1): if deg == -1: deg = len(a) res = [0] * deg res[0] = pow(a[0],mod-2,mod) d = 1 while d < deg: f = [0] * (d << 1) tmp = min(len(a),d << 1) f[:tmp] = a[:tmp] g = [0] * (d << 1) g[:d] = res[:d] ntt(f) ntt(g) for i in range(d << 1): f[i] = f[i] * g[i] % mod ntt_inv(f) f[:d] = [0] * d ntt(f) for i in range(d << 1): f[i] = f[i] * g[i] % mod ntt_inv(f) for j in range(d,min(d << 1,deg)): if f[j]: res[j] = mod - f[j] else: res[j] = 0 d <<= 1 return res def fps_div(f,g): n,m = len(f),len(g) if n < m: return [],f rev_f = f[:] rev_f = rev_f[::-1] rev_g = g[:] rev_g = rev_g[::-1] rev_q = convolute(rev_f,fps_inv(rev_g,n-m+1))[:n-m+1] q = rev_q[:] q = q[::-1] p = convolute(g,q) r = f[:] for i in range(min(len(p),len(r))): r[i] -= p[i] r[i] %= mod while len(r): if r[-1] != 0: break r.pop() return q,r def fps_diff(a): res = [] for i in range(1,len(a)): res.append(i * a[i] % mod) return res def fps_integrate(a): n = len(a) res = [0] * (n + 1) for i in range(n): res[i+1] = pow(i + 1,mod-2,mod) * a[i] % mod return res def fps_log(a,deg = -1): if deg == -1: deg = len(a) res = convolute(fps_diff(a),fps_inv(a,deg)) res = fps_integrate(res) return res[:deg] def fps_exp(a,deg = -1): if deg == -1: deg = len(a) b = [1,0] if len(a) > 1: b[1] = a[1] c = [1] p = [] q = [1,1] m = 2 while m < deg: y = b + [0]*m ntt(y) p = q z = [y[i] * p[i] for i in range(len(p))] ntt_inv(z) z[:m >> 1] = [0] * (m >> 1) ntt(z) for i in range(len(p)): z[i] = z[i] * (-p[i]) % mod ntt_inv(z) c[m >> 1:] = z[m >> 1:] q = c + [0] * m ntt(q) tmp = min(len(a),m) x = a[:tmp] + [0] * (m - tmp) x = fps_diff(x) x.append(0) ntt(x) for i in range(len(x)): x[i] = x[i] * y[i] % mod ntt_inv(x) for i in range(len(b)): if i == 0: continue x[i-1] -= b[i] * i % mod x += [0] * m for i in range(m-1): x[m+i],x[i] = x[i],0 ntt(x) for i in range(len(q)): x[i] = x[i] * q[i] % mod ntt_inv(x) x.pop() x = fps_integrate(x) x[:m] = [0] * m for i in range(m,min(len(a),m << 1)): x[i] += a[i] ntt(x) for i in range(len(y)): x[i] = x[i] * y[i] % mod ntt_inv(x) b[m:] = x[m:] m <<= 1 return b[:deg] def fps_pow(f,k,deg = -1): if k == 0: return [1] + [0] * (len(f) - 1) p = 0 if deg == -1: deg = len(f) while p < deg: if f[p]: break p += 1 if p == deg: return [0] * len(f) a = f[p] a_inv = pow(a,mod-2,mod) a = pow(a,k,mod) f = f[p:] for i in range(deg-p): f[i] = f[i] * a_inv % mod g = fps_log(f) for i in range(deg-p): g[i] = g[i] * k % mod g = fps_exp(g) res = [0] * deg for i in range(deg): j = i + p*k if j >= deg: break res[j] = g[i] * a % mod return res def Bostan_Mori(N,Q,A = [1]): d = len(Q) - 1 P = convolute(Q,A)[:d] n = N while True: if n == 0: return P[0] QQ = [Q[i] for i in range(d+1)] for i in range(1,d+1,2): QQ[i] = mod - QQ[i] UU = convolute(P,QQ) U_e = [] U_o = [] for i in range(len(UU)): if i % 2: U_o.append(UU[i]) else: U_e.append(UU[i]) V = convolute(Q,QQ) Q = [V[2*i] for i in range(d+1)] if n % 2: P = U_o[:] else: P = U_e[:] n //= 2 n = 10**5 fact = [1 for i in range(n+1)] fact_inv = [1 for i in range(n+1)] for i in range(1,n+1): fact[i] = fact[i-1]*i % mod fact_inv[-1] = pow(fact[-1],mod-2,mod) for i in range(n,0,-1): fact_inv[i-1] = fact_inv[i]*i % mod def comb(n,r): if n < r or n < 0 or r < 0: return 0 res = fact_inv[n-r] * fact_inv[r] % mod res *= fact[n] res %= mod return res inv = [1 for j in range(n+1)] for a in range(2,n+1): # ax + py = 1 <=> rx + p(-x-qy) = -q => x = -(inv[r]) * (p//a) (r = p % a) res = (mod - inv[mod%a]) * (mod // a) inv[a] = res % mod M,N = map(int,input().split()) A = list(map(int,input().split())) C = [0 for i in range(M+1)] for a in A: C[a] += 1 D = [0 for i in range(N+1)] for c in C: D[c] += 1 F = [fact_inv[i] for i in range(N+1)] for c in range(N+1): if D[c] == 0: continue for n in range(N+1): if n < c: F[n] = 0 else: f = pow(fact[n] * fact_inv[n-c] % mod,D[c],mod) F[n] = F[n] * f % mod G = [fact_inv[i] for i in range(N+1)] for i in range(N): if i % 2: G[i] = mod - G[i] H = convolute(F,G) ans = 0 for n in range(N+1): H[n] = H[n] * fact[n] % mod ans += H[n] ans %= mod print(ans)