# https://github.com/tatyam-prime/SortedSet/tree/main import math from bisect import bisect_left, bisect_right from typing import Generic, Iterable, Iterator, TypeVar, Union, List T = TypeVar('T') class SortedSet(Generic[T]): BUCKET_RATIO = 50 REBUILD_RATIO = 170 def _build(self, a=None) -> None: "Evenly divide `a` into buckets." if a is None: a = list(self) size = self.size = len(a) bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO))) self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)] def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)" a = list(a) if not all(a[i] < a[i + 1] for i in range(len(a) - 1)): a = sorted(set(a)) self._build(a) def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedSet" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _find_bucket(self, x: T) -> List[T]: "Find the bucket which should contain x. self must not be empty." for a in self.a: if x <= a[-1]: return a return a def __contains__(self, x: T) -> bool: if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) return i != len(a) and a[i] == x def add(self, x: T) -> bool: "Add an element and return True if added. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return True a = self._find_bucket(x) i = bisect_left(a, x) if i != len(a) and a[i] == x: return False a.insert(i, x) self.size += 1 if len(a) > len(self.a) * self.REBUILD_RATIO: self._build() return True def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) if i == len(a) or a[i] != x: return False a.pop(i) self.size -= 1 if len(a) == 0: self._build() return True def lt(self, x: T) -> Union[T, None]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Union[T, None]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Union[T, None]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Union[T, None]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, x: int) -> T: "Return the x-th element, or IndexError if it doesn't exist." if x < 0: x += self.size if x < 0: raise IndexError for a in self.a: if x < len(a): return a[x] x -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans class UnionFind: def __init__(self, n): self._n = n self._parent = [-1] * n self._roots = set(range(n)) def _find(self, x): if self._parent[x] < 0: return x self._parent[x] = self._find(self._parent[x]) return self._parent[x] def union(self, x, y): x, y = self._find(x), self._find(y) if x == y: return if self._parent[y] < self._parent[x]: x, y = y, x self._parent[x] += self._parent[y] self._parent[y] = x self._roots.discard(y) def same(self, x, y): return self._find(x) == self._find(y) def size(self, x): return -self._parent[self._find(x)] def members(self, x): root = self._find(x) return [i for i in range(self._n) if self._find(i) == root] def all_group_members(self): group_members = dict() for member in range(self._n): root = self._find(member) if root not in group_members: group_members[root] = [] group_members[root].append(member) return group_members def root(self, x): return self._find(x) def roots(self): return self._roots def group_count(self): return len(self.roots()) def group_numbers(self): return [self._find(i) for i in range(self._n)] def __str__(self): return '\n'.join(f'{r}: {m}' for r, m in self.all_group_members().items()) N, A, B = map(int, input().split()) X = list(map(int, input().split())) I = {x: i for i, x in enumerate(X)} S = SortedSet(X) uf = UnionFind(N) rm = [] while S: sx = S[0] S.discard(sx) stack = [sx] while stack: x = stack.pop() ldx1 = S.index(x - B) rdx1 = S.index(x - A + 1) ldx2 = S.index(x + A) rdx2 = S.index(x + B + 1) for R in range(ldx1, rdx1), range(ldx2, rdx2): for idx in R: if not 0 <= idx < len(S): continue nx = S[idx] if A <= abs(x - nx) <= B: uf.union(I[x], I[nx]) rm.append(nx) stack.append(nx) while rm: S.discard(rm.pop()) for i in range(N): print(uf.size(i))